PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1578.
Published online 2008 July 23. doi:  10.1107/S1600536808022551
PMCID: PMC2962196

6-Amino-4-(4-chloro­phen­yl)-2-oxo-1,2-dihydro­pyridine-3,5-dicarbonitrile ethanol solvate

Abstract

The title compound, C13H7ClN4O·C2H6O, was synthesized by the reaction of 4-chloro­benzaldehyde, malononitrile and 10% sodium hydroxide solution in an aqueous medium. In the crystal structure, the crystal packing is stabilized by inter­molecular N—H(...)N, O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Hasvold et al. (2003 [triangle]); Kappe (2004 [triangle]); Li et al. (2000 [triangle]); Mederski et al. (1999 [triangle]); Parlow et al. (2003 [triangle]); Varma (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1578-scheme1.jpg

Experimental

Crystal data

  • C13H7ClN4O·C2H6O
  • M r = 316.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1578-efi1.jpg
  • a = 6.7787 (10) Å
  • b = 10.4318 (14) Å
  • c = 11.2857 (17) Å
  • α = 88.634 (2)°
  • β = 84.643 (1)°
  • γ = 81.700 (1)°
  • V = 786.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 298 (2) K
  • 0.14 × 0.09 × 0.03 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.965, T max = 0.992
  • 4165 measured reflections
  • 2727 independent reflections
  • 1162 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.140
  • S = 1.01
  • 2727 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022551/bq2082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022551/bq2082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) for financial support.

supplementary crystallographic information

Comment

In recent years, amino-substituted 2-pyridones have attracted attention due to their promising features as an important core structure for the development of biologically active molecules (Kappe, 2004). Pharmaceuticals with the 2- pyridone skeleton have emerged as antitumor (Varma, 1999), antifungal (Parlow et al.,2003), antibacterial (Hasvold et al. 2003), antiviral, antithrombotic (Li et al. 2000) agents. Meanwhile it is well known that the 2-pyridone ring system is a valuable building block in natural product synthesis. On the other hand, pyridine dicarbonitriles have been exhibited as potential novel prion disease therapeutics (Mederski et al. 1999). Therefore design and synthesis of these compounds has been challenging. For these reasons, the synthesis of compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound, (I).

In the crystal structure, the dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C8—C13 benzene ring is 51.68 (13)° (Fig 1.). The molecules are connected via N—H···N and N—H···O intermolecular hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 4-chlorobenzaldehyde (1 mmol), malononitrile (2 mmol), 10% sodium hydroxide solution (1 ml) in water (2 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 48%; m.p. >573 K). IR (cm-1): 3450, 3317, 3205, 2216, 1669, 1590, 1484, 1378; 1H NMR (DMSO-d6): 7.53 (2H, d, J = 8.4 Hz, ArH), 7.64 (2H, d, J = 8.4 Hz, ArH), 7.72 (2H, brs, NH2), 11.94 (1H, s, NH).

Refinement

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å, O–H = 0.82Å and C—H = 0.93–0.97 Å.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The packing diagram of title compound viewed along the a axis.

Crystal data

C13H7ClN4O·C2H6OZ = 2
Mr = 316.74F000 = 328
Triclinic, P1Dx = 1.338 Mg m3
a = 6.7787 (10) ÅMo Kα radiation λ = 0.71073 Å
b = 10.4318 (14) ÅCell parameters from 566 reflections
c = 11.2857 (17) Åθ = 2.7–20.3º
α = 88.634 (2)ºµ = 0.26 mm1
β = 84.6430 (10)ºT = 298 (2) K
γ = 81.7000 (10)ºBlock, colorless
V = 786.2 (2) Å30.14 × 0.09 × 0.03 mm

Data collection

Bruker SMART CCD area-detector diffractometer2727 independent reflections
Radiation source: fine-focus sealed tube1162 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→7
Tmin = 0.965, Tmax = 0.992k = −7→12
4165 measured reflectionsl = −13→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.0453P)2 + 0.0621P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2727 reflectionsΔρmax = 0.31 e Å3
199 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.3974 (2)0.82840 (13)−0.02206 (12)0.0905 (6)
N10.5949 (5)0.1640 (3)0.4620 (3)0.0420 (9)
H10.62640.09640.50510.050*
N20.8641 (5)0.2447 (3)0.5286 (3)0.0520 (10)
H2A0.88770.17480.57000.062*
H2B0.93980.30400.53040.062*
N30.8433 (5)0.5684 (4)0.4171 (3)0.0565 (11)
N40.0902 (6)0.2779 (4)0.1960 (3)0.0705 (13)
O10.3337 (4)0.0727 (3)0.4075 (2)0.0544 (9)
O2−0.0003 (5)0.0195 (3)0.6598 (3)0.0923 (13)
H2−0.0927−0.02370.66390.138*
C10.7115 (6)0.2611 (4)0.4621 (3)0.0389 (11)
C20.6615 (5)0.3715 (4)0.3915 (3)0.0353 (10)
C30.5067 (6)0.3773 (4)0.3158 (3)0.0376 (10)
C40.3897 (6)0.2774 (4)0.3224 (3)0.0389 (11)
C50.4310 (6)0.1666 (4)0.3979 (3)0.0405 (11)
C60.7651 (6)0.4800 (4)0.4034 (3)0.0422 (11)
C70.2249 (6)0.2769 (4)0.2514 (4)0.0473 (12)
C80.4755 (6)0.4877 (4)0.2317 (3)0.0389 (10)
C90.2890 (6)0.5612 (4)0.2250 (4)0.0526 (12)
H90.17890.54060.27330.063*
C100.2668 (7)0.6653 (5)0.1464 (4)0.0615 (14)
H100.14160.71450.14270.074*
C110.4283 (8)0.6966 (4)0.0736 (4)0.0576 (13)
C120.6122 (7)0.6221 (4)0.0768 (4)0.0494 (12)
H120.72020.64120.02590.059*
C130.6369 (6)0.5191 (4)0.1552 (3)0.0425 (11)
H130.76220.46970.15740.051*
C140.0839 (8)0.0126 (5)0.7684 (4)0.0776 (16)
H14A0.1464−0.07530.78280.093*
H14B−0.02000.03590.83240.093*
C150.2369 (8)0.1030 (5)0.7664 (5)0.0884 (18)
H15A0.29410.09800.84130.133*
H15B0.17430.19000.75280.133*
H15C0.34040.07880.70370.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1212 (13)0.0645 (10)0.0815 (10)−0.0005 (8)−0.0159 (8)0.0352 (8)
N10.050 (2)0.032 (2)0.049 (2)−0.0153 (18)−0.0145 (17)0.0133 (18)
N20.058 (2)0.041 (2)0.065 (2)−0.0234 (19)−0.025 (2)0.015 (2)
N30.064 (3)0.056 (3)0.057 (2)−0.028 (2)−0.016 (2)0.010 (2)
N40.063 (3)0.068 (3)0.088 (3)−0.025 (2)−0.031 (2)0.018 (3)
O10.0521 (19)0.047 (2)0.074 (2)−0.0301 (16)−0.0224 (16)0.0188 (17)
O20.097 (3)0.081 (3)0.119 (3)−0.050 (2)−0.067 (2)0.045 (2)
C10.043 (3)0.036 (3)0.041 (2)−0.011 (2)−0.011 (2)0.004 (2)
C20.041 (3)0.031 (3)0.037 (2)−0.014 (2)−0.0074 (19)0.004 (2)
C30.041 (3)0.034 (3)0.038 (2)−0.011 (2)0.000 (2)0.004 (2)
C40.038 (2)0.040 (3)0.042 (2)−0.014 (2)−0.008 (2)0.008 (2)
C50.038 (3)0.040 (3)0.045 (3)−0.007 (2)−0.009 (2)0.008 (2)
C60.047 (3)0.041 (3)0.041 (3)−0.013 (2)−0.006 (2)0.007 (2)
C70.046 (3)0.043 (3)0.055 (3)−0.015 (2)−0.008 (2)0.013 (2)
C80.040 (3)0.034 (3)0.045 (3)−0.014 (2)−0.005 (2)0.007 (2)
C90.052 (3)0.040 (3)0.065 (3)−0.005 (2)−0.004 (2)0.009 (3)
C100.052 (3)0.050 (3)0.077 (4)0.006 (3)−0.005 (3)0.009 (3)
C110.072 (4)0.045 (3)0.057 (3)−0.004 (3)−0.018 (3)0.016 (3)
C120.064 (3)0.046 (3)0.042 (3)−0.023 (3)−0.010 (2)0.012 (2)
C130.043 (3)0.042 (3)0.045 (3)−0.012 (2)−0.010 (2)0.008 (2)
C140.103 (4)0.058 (4)0.078 (4)−0.023 (3)−0.027 (3)0.010 (3)
C150.085 (4)0.074 (4)0.115 (5)−0.020 (3)−0.036 (3)−0.014 (4)

Geometric parameters (Å, °)

Cl1—C111.728 (4)C4—C71.435 (5)
N1—C11.372 (4)C8—C91.388 (5)
N1—C51.377 (4)C8—C131.401 (5)
N1—H10.8600C9—C101.385 (5)
N2—C11.323 (4)C9—H90.9300
N2—H2A0.8600C10—C111.380 (6)
N2—H2B0.8600C10—H100.9300
N3—C61.147 (5)C11—C121.374 (6)
N4—C71.152 (5)C12—C131.377 (5)
O1—C51.255 (4)C12—H120.9300
O2—C141.396 (5)C13—H130.9300
O2—H20.8200C14—C151.497 (6)
C1—C21.404 (5)C14—H14A0.9700
C2—C31.407 (5)C14—H14B0.9700
C2—C61.432 (5)C15—H15A0.9600
C3—C41.395 (5)C15—H15B0.9600
C3—C81.479 (5)C15—H15C0.9600
C4—C51.429 (5)
C1—N1—C5124.9 (3)C10—C9—C8120.0 (4)
C1—N1—H1117.5C10—C9—H9120.0
C5—N1—H1117.5C8—C9—H9120.0
C1—N2—H2A120.0C11—C10—C9120.7 (4)
C1—N2—H2B120.0C11—C10—H10119.6
H2A—N2—H2B120.0C9—C10—H10119.6
C14—O2—H2109.5C12—C11—C10119.7 (4)
N2—C1—N1118.0 (4)C12—C11—Cl1120.5 (4)
N2—C1—C2124.1 (4)C10—C11—Cl1119.8 (4)
N1—C1—C2117.9 (4)C11—C12—C13120.2 (4)
C1—C2—C3120.7 (4)C11—C12—H12119.9
C1—C2—C6118.1 (3)C13—C12—H12119.9
C3—C2—C6121.1 (4)C12—C13—C8120.8 (4)
C4—C3—C2118.4 (4)C12—C13—H13119.6
C4—C3—C8122.5 (3)C8—C13—H13119.6
C2—C3—C8119.1 (4)O2—C14—C15109.8 (4)
C3—C4—C5121.8 (4)O2—C14—H14A109.7
C3—C4—C7122.4 (4)C15—C14—H14A109.7
C5—C4—C7115.7 (4)O2—C14—H14B109.7
O1—C5—N1118.8 (4)C15—C14—H14B109.7
O1—C5—C4125.3 (4)H14A—C14—H14B108.2
N1—C5—C4115.9 (4)C14—C15—H15A109.5
N3—C6—C2177.2 (5)C14—C15—H15B109.5
N4—C7—C4178.7 (5)H15A—C15—H15B109.5
C9—C8—C13118.5 (4)C14—C15—H15C109.5
C9—C8—C3121.9 (4)H15A—C15—H15C109.5
C13—C8—C3119.7 (4)H15B—C15—H15C109.5
C5—N1—C1—N2179.8 (4)C7—C4—C5—O1−1.2 (6)
C5—N1—C1—C2−0.3 (6)C3—C4—C5—N1−1.0 (6)
N2—C1—C2—C3174.8 (4)C7—C4—C5—N1177.1 (4)
N1—C1—C2—C3−5.0 (6)C4—C3—C8—C952.2 (6)
N2—C1—C2—C6−8.4 (6)C2—C3—C8—C9−128.5 (4)
N1—C1—C2—C6171.8 (3)C4—C3—C8—C13−127.0 (4)
C1—C2—C3—C47.1 (6)C2—C3—C8—C1352.4 (5)
C6—C2—C3—C4−169.6 (4)C13—C8—C9—C10−1.9 (6)
C1—C2—C3—C8−172.3 (4)C3—C8—C9—C10178.9 (4)
C6—C2—C3—C811.0 (6)C8—C9—C10—C110.4 (7)
C2—C3—C4—C5−4.0 (6)C9—C10—C11—C121.6 (7)
C8—C3—C4—C5175.4 (4)C9—C10—C11—Cl1−179.0 (4)
C2—C3—C4—C7178.1 (4)C10—C11—C12—C13−2.2 (7)
C8—C3—C4—C7−2.5 (6)Cl1—C11—C12—C13178.5 (3)
C1—N1—C5—O1−178.4 (4)C11—C12—C13—C80.7 (6)
C1—N1—C5—C43.3 (6)C9—C8—C13—C121.3 (6)
C3—C4—C5—O1−179.2 (4)C3—C8—C13—C12−179.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.755 (4)149
N2—H2B···N3ii0.862.253.084 (5)164
N2—H2A···O2iii0.861.982.832 (4)168
N1—H1···O1iv0.862.002.849 (4)171

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2082).

References

  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hasvold, L. A., Wang, W., Gwaltney, S. L., Rockway, T. W., Nelson, L. T. J., Mantei, R. A., Fakhoury, S. A., Sullivan, G. M., Li, Q., Lin, N.-H., Wang, L., Zhang, H., Cohen, J.; Gu, W.-Z., Marsh, K., Bauch, J., Rosenberg, S. & Sham, H. L. (2003). Bioorg. Med. Chem. Lett.13, 4001–4005. [PubMed]
  • Kappe, C. O. (2004). Angew. Chem. Int. Ed.43, 6250–6284. [PubMed]
  • Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev.20, 231–293. [PubMed]
  • Mederski, W. W. K. R., Lefort, M., Germann, M. & Kux, D. (1999). Tetrahedron, 55, 12757–12770.
  • Parlow, J. J., Kurumbail, R. G., Stegeman, R. A., Stevens, A. M., Stallings, W. C. & South, M. S. (2003). J. Med. Chem.46, 4696–4701. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Varma, R. S. (1999). J. Heterocycl. Chem.36, 1565–1571.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography