PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1565.
Published online 2008 July 23. doi:  10.1107/S1600536808022241
PMCID: PMC2962187

2,3,4-Trihydroxy­benzaldehyde

Abstract

The title compound, C7H6O4, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, the 2-hydr­oxy group is bound via intra­molecular hydrogen bonds to the aldehyde group. The mol­ecules inter­act through O—H(...)O hydrogen bonds to form a three-dimensional network structure; each hydr­oxy group serves as a donor to only one acceptor atom.

Related literature

For some references on hydr­oxy-substituted benzaldehydes, see: Kretz et al. (2007 [triangle]); Ng (2005 [triangle]). For the crystal structures of Schiff base derivatives of 2,3,4-trihydroxy­salicylaldehyde, see: Petek et al. (2006 [triangle]); Sun et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1565-scheme1.jpg

Experimental

Crystal data

  • C7H6O4
  • M r = 154.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1565-efi1.jpg
  • a = 3.6222 (3) Å
  • b = 24.006 (2) Å
  • c = 14.8965 (9) Å
  • β = 93.524 (5)°
  • V = 1292.9 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 100 (2) K
  • 0.30 × 0.03 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 5464 measured reflections
  • 1491 independent reflections
  • 1087 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.132
  • S = 1.01
  • 1491 reflections
  • 217 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022241/bt2748sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022241/bt2748Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study through the purchase of the diffractometer.

supplementary crystallographic information

Comment

2,3,4-Trihydroxybenzaldehyde condenses with primary amines to afford Schiff bases. The crystal structures of only few such Schiff bases have been reported. The 2-fluoroaniline derivative exists as a zwitterion as the hydrogen atom of the 2-hydroxy substituent is transferred to the imino nitrogen atom (Petek et al., 2006). On the other hand, the antipyrine derivative has the expected neutral structure (Sun et al., 2007). Although there are several structural studies on hydroxy-substituted benzaldehydes (Kretz et al., 2007; Ng, 2005), the structure of 2,3,4-trihydroxybenzaldehyde has not been reported.

2,3,4-Trihydroxybenzaldehyde (Scheme I) crystallizes with two independent molecules in the asymmetric unit. In both, the 2-hydroxy group is hydrogen-bonded to the aldehyde group via an intramolecular hydrogen bond (Fig. 1). The molecules interact through O–H···O hydrogen bonds to form a three-dimensional network structure; each hydroxy group serves as donor to only one acceptor atom.

Experimental

Commercially available 2,3,4-trihydroxybenzaldehyde was recrystallized from ethanol to furnished light-brown, needled-shaped crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their displacement parameters were set to 1.5Ueq(O).

Figures

Fig. 1.
Plot (Barbour, 2001) of the two independent molecules of 2,3,4-trihydroxybenzaldehyde with 50% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C7H6O4F000 = 640
Mr = 154.12Dx = 1.584 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C cCell parameters from 446 reflections
a = 3.6222 (3) Åθ = 2.8–19.5º
b = 24.006 (2) ŵ = 0.13 mm1
c = 14.8965 (9) ÅT = 100 (2) K
β = 93.524 (5)ºNeedle, light brown
V = 1292.9 (2) Å30.30 × 0.03 × 0.03 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer1087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Monochromator: graphiteθmax = 27.5º
T = 100(2) Kθmin = 1.7º
ω scansh = −4→3
Absorption correction: Nonek = −30→30
5464 measured reflectionsl = −19→19
1491 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.0467P)2 + 2.3366P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1491 reflectionsΔρmax = 0.30 e Å3
217 parametersΔρmin = −0.32 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Friedel pairs were merged

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5000 (11)0.19999 (15)0.5000 (3)0.0203 (9)
O20.4561 (11)0.18738 (14)0.6744 (3)0.0177 (9)
H20.432 (19)0.172 (2)0.6236 (19)0.027*
O30.2999 (11)0.23611 (14)0.8356 (2)0.0186 (9)
H30.253 (18)0.2022 (8)0.827 (4)0.028*
O40.0704 (11)0.34509 (15)0.8358 (3)0.0187 (9)
H40.046 (19)0.324 (2)0.879 (3)0.028*
O51.4505 (11)−0.00937 (16)1.0289 (3)0.0206 (9)
O61.1992 (11)0.08512 (14)0.9559 (2)0.0195 (9)
H61.297 (17)0.062 (2)0.993 (3)0.029*
O70.8968 (11)0.13655 (14)0.8094 (3)0.0187 (9)
H70.801 (18)0.142 (2)0.7575 (19)0.028*
O80.7396 (10)0.07867 (14)0.6555 (2)0.0172 (9)
H80.696 (19)0.056 (2)0.613 (3)0.026*
C10.3888 (16)0.2489 (2)0.5099 (4)0.0182 (12)
H10.35710.27170.45790.022*
C20.3068 (15)0.2725 (2)0.5942 (4)0.0140 (11)
C30.3431 (15)0.2416 (2)0.6752 (4)0.0148 (11)
C40.2636 (16)0.2646 (2)0.7557 (4)0.0151 (12)
C50.1496 (15)0.3204 (2)0.7578 (4)0.0153 (11)
C60.1124 (15)0.3520 (2)0.6789 (4)0.0171 (12)
H6A0.03280.38960.68120.021*
C70.1914 (16)0.3285 (2)0.5982 (4)0.0184 (12)
H7A0.16800.35010.54480.022*
C81.3595 (16)−0.0319 (2)0.9554 (4)0.0182 (12)
H8A1.4039−0.07070.94980.022*
C91.1938 (15)−0.0035 (2)0.8791 (4)0.0146 (11)
C101.1232 (16)0.0546 (2)0.8814 (4)0.0150 (11)
C110.9686 (16)0.08085 (19)0.8055 (4)0.0142 (11)
C120.8902 (15)0.0499 (2)0.7274 (3)0.0142 (11)
C130.9584 (15)−0.0072 (2)0.7239 (4)0.0160 (12)
H130.9043−0.02760.67010.019*
C141.1054 (15)−0.0333 (2)0.7999 (4)0.0167 (12)
H141.1480−0.07230.79880.020*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.023 (2)0.0189 (19)0.019 (2)0.0023 (16)0.0050 (18)−0.0053 (15)
O20.025 (2)0.0122 (17)0.015 (2)0.0033 (16)−0.0038 (18)−0.0012 (15)
O30.032 (3)0.0111 (17)0.013 (2)0.0021 (16)0.0006 (18)0.0028 (14)
O40.027 (2)0.0147 (17)0.015 (2)0.0041 (17)0.0023 (17)−0.0010 (15)
O50.023 (2)0.023 (2)0.015 (2)0.0024 (17)−0.0034 (17)0.0012 (16)
O60.032 (3)0.0147 (18)0.011 (2)−0.0003 (16)−0.0070 (18)−0.0039 (15)
O70.029 (3)0.0124 (16)0.0140 (18)0.0040 (16)−0.0032 (17)−0.0030 (15)
O80.023 (2)0.0163 (18)0.011 (2)0.0023 (16)−0.0065 (17)−0.0020 (14)
C10.017 (3)0.020 (3)0.017 (3)0.001 (2)−0.005 (3)0.003 (2)
C20.010 (3)0.018 (2)0.014 (3)0.001 (2)0.000 (2)−0.003 (2)
C30.007 (3)0.015 (2)0.022 (3)0.002 (2)−0.002 (2)−0.002 (2)
C40.016 (3)0.014 (2)0.015 (3)0.001 (2)−0.002 (2)0.001 (2)
C50.011 (3)0.017 (3)0.019 (3)−0.001 (2)0.003 (2)−0.001 (2)
C60.014 (3)0.012 (2)0.025 (3)0.002 (2)0.000 (3)0.000 (2)
C70.021 (3)0.017 (3)0.017 (3)0.002 (2)−0.001 (3)0.003 (2)
C80.014 (3)0.019 (3)0.022 (3)0.000 (2)0.002 (2)0.006 (2)
C90.012 (3)0.015 (2)0.016 (3)0.000 (2)0.001 (2)0.001 (2)
C100.011 (3)0.021 (3)0.014 (3)−0.002 (2)0.000 (2)−0.004 (2)
C110.013 (3)0.012 (2)0.017 (3)0.000 (2)0.001 (2)−0.005 (2)
C120.009 (3)0.020 (2)0.014 (3)0.000 (2)0.000 (2)0.003 (2)
C130.013 (3)0.020 (3)0.014 (3)0.000 (2)−0.002 (2)−0.004 (2)
C140.012 (3)0.014 (3)0.024 (3)0.001 (2)−0.001 (2)0.000 (2)

Geometric parameters (Å, °)

O1—C11.253 (6)C9—C101.421 (7)
O2—C31.365 (6)C10—C111.382 (8)
O3—C41.372 (6)C11—C121.395 (7)
O4—C51.351 (6)C12—C131.394 (7)
O5—C81.248 (7)C13—C141.372 (7)
O6—C101.343 (6)O2—H20.84 (1)
O7—C111.364 (6)O3—H30.84 (1)
O8—C121.361 (6)O4—H40.84 (1)
C1—C21.426 (7)O6—H60.84 (1)
C2—C71.409 (7)O7—H70.84 (1)
C2—C31.416 (7)O8—H80.84 (1)
C3—C41.367 (7)C1—H10.9500
C4—C51.402 (7)C6—H6A0.9500
C5—C61.398 (7)C7—H7A0.9500
C6—C71.374 (7)C8—H8A0.9500
C8—C91.425 (8)C13—H130.9500
C9—C141.398 (7)C14—H140.9500
C3—O2—H2114 (4)C10—C9—C8121.1 (5)
C4—O3—H3110 (5)O6—C10—C11118.6 (4)
C5—O4—H4116 (5)O6—C10—C9121.9 (5)
C10—O6—H6104 (4)C11—C10—C9119.5 (5)
C11—O7—H7101 (4)O7—C11—C10118.7 (5)
C12—O8—H8108 (4)O7—C11—C12121.9 (5)
O1—C1—C2124.2 (5)C10—C11—C12119.4 (4)
C7—C2—C3118.4 (5)O8—C12—C13122.3 (5)
C7—C2—C1119.7 (5)O8—C12—C11115.9 (4)
C3—C2—C1121.9 (4)C13—C12—C11121.9 (5)
O2—C3—C4118.2 (5)C14—C13—C12118.6 (5)
O2—C3—C2120.4 (5)C13—C14—C9121.3 (5)
C4—C3—C2121.5 (4)O1—C1—H1117.9
C3—C4—O3123.1 (4)C2—C1—H1117.9
C3—C4—C5118.9 (5)C7—C6—H6A120.1
O3—C4—C5118.0 (5)C5—C6—H6A120.1
O4—C5—C6118.0 (5)C6—C7—H7A119.8
O4—C5—C4121.1 (5)C2—C7—H7A119.8
C6—C5—C4120.9 (5)O5—C8—H8A117.6
C7—C6—C5119.9 (5)C9—C8—H8A117.6
C6—C7—C2120.4 (5)C14—C13—H13120.7
O5—C8—C9124.7 (5)C12—C13—H13120.7
C14—C9—C10119.4 (5)C13—C14—H14119.3
C14—C9—C8119.5 (5)C9—C14—H14119.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (1)1.99 (5)2.631 (5)133 (6)
O3—H3···O7i0.84 (1)2.04 (3)2.816 (5)153 (6)
O4—H4···O1ii0.84 (1)1.90 (3)2.701 (5)159 (6)
O6—H6···O50.84 (1)1.87 (3)2.653 (5)154 (6)
O7—H7···O20.84 (1)2.02 (3)2.772 (5)149 (6)
O8—H8···O5iii0.84 (1)1.86 (2)2.679 (5)162 (7)

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2748).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kretz, T., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, o4673.
  • Ng, S. W. (2005). Acta Cryst. E61, o2301–o2302.
  • Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685–o3687.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522–o2523.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography