PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1560.
Published online 2008 July 19. doi:  10.1107/S160053680802240X
PMCID: PMC2962182

1,1′-(Butane-1,4-diyl)di-1H-imidazole–benzene-1,3,5-triol–water (1/1/1)

Abstract

The asymmetric unit of the title compound, C10H14N4·C6H6O3·H2O, contains one mol­ecule of benzene-1,3,5-triol, two half-molecules of 1,1′-butane-1,4-diyldi-1H-imidazole (each molecule is centrosymmetric) and one solvent water mol­ecule. In the crystal structure, inter­molecular O—H(...)O and O—H(...)N hydrogen bonds link all mol­ecules into a three-dimensional supra­molecular network.

Related literature

For background and details of the synthesis of 1,1′-(1,4-butanedi­yl)diimidazole, see: Ma et al. (2003 [triangle]). For the related crystal structure of 1,1′-(1,4-butanedi­yl)diimidazole, see: Yu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1560-scheme1.jpg

Experimental

Crystal data

  • C10H14N4·C6H6O3·H2O
  • M r = 334.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1560-efi1.jpg
  • a = 7.964 (5) Å
  • b = 8.405 (7) Å
  • c = 14.800 (9) Å
  • α = 98.40 (3)°
  • β = 92.93 (2)°
  • γ = 117.47 (3)°
  • V = 861.5 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 291 (2) K
  • 0.31 × 0.31 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.971, T max = 0.982
  • 8527 measured reflections
  • 3911 independent reflections
  • 2370 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.195
  • S = 1.05
  • 3911 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802240X/cv2422sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802240X/cv2422Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Heilongjiang University for supporting this study.

supplementary crystallographic information

Comment

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials (Ma et al., 2003; Yu et al., 2008). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-(1,4-butanediyl)diimidazole and m-trihydroxybenzene in an methanol solution.

The asymmetric unit of the title compound, C10H14N4.C6H6O3.H2O, contains one molecule of benzene-1,3,5-triol, two halfs of two independent centrosymmetric molecules of 1,1'-butane-1,4-diyldi-1H-imidazole and one crystalline water molecule (Figure 1). The two 1,1'-(1,4-butanediyl)diimidazole molecules both lie on inversion center.

There are five symmetry independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the 1,1'-(1,4-butanediyl)diimidazole molecules, m-trihydroxybenzene molecule and water solvent molecule into an infinite three-dimensional network (Table 1, Figure 2).

Experimental

1,1'-(1,4-Butanediyl)diimidazole was prepared from imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma et al., 2003). m-trihydroxybenzene (0.126 g, 1 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Red crystals of (I) were obtained.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). The hydroxy H atoms were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A portion of the crystal structure of (I), showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (I) -x, -y, -z + 1; (II) -x, -y, -z]. Dashed line indicates the hydrogen-bonding interaction.
Fig. 2.
A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms have been omitted for clarity.

Crystal data

C10H14N4·C6H6O3·H2OZ = 2
Mr = 334.38F000 = 356
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.964 (5) ÅCell parameters from 5362 reflections
b = 8.405 (7) Åθ = 3.1–27.6º
c = 14.800 (9) ŵ = 0.09 mm1
α = 98.40 (3)ºT = 291 (2) K
β = 92.93 (2)ºBlock, red
γ = 117.47 (3)º0.31 × 0.31 × 0.19 mm
V = 861.5 (10) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer3911 independent reflections
Radiation source: fine-focus sealed tube2370 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 291(2) Kθmax = 27.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.971, Tmax = 0.982k = −10→10
8527 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.195  w = 1/[σ2(Fo2) + (0.1078P)2 + 0.0441P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3911 reflectionsΔρmax = 0.20 e Å3
220 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6082 (3)0.4322 (3)0.27525 (15)0.0495 (5)
H10.59350.53590.29070.059*
C20.4512 (3)0.2634 (3)0.24735 (14)0.0463 (5)
C30.4707 (3)0.1074 (3)0.22121 (14)0.0440 (5)
H30.3639−0.00600.20090.053*
C40.6534 (3)0.1248 (3)0.22616 (14)0.0431 (5)
C50.8124 (3)0.2923 (3)0.25642 (14)0.0445 (5)
H50.93400.30240.26090.053*
C60.7880 (3)0.4458 (3)0.28012 (14)0.0461 (5)
C70.5669 (4)0.2164 (4)0.62310 (17)0.0599 (6)
H70.53880.15500.67220.072*
C80.7113 (4)0.4008 (4)0.5372 (2)0.0807 (9)
H80.80610.49520.51440.097*
C90.5333 (4)0.2938 (5)0.4948 (2)0.0814 (9)
H90.48270.29970.43810.098*
C100.2441 (4)0.0249 (4)0.5326 (2)0.0770 (8)
H100.2144−0.02700.58780.092*
H110.2360−0.06980.48370.092*
C110.0998 (3)0.0796 (4)0.50659 (19)0.0655 (7)
H120.12480.12630.44980.079*
H130.10940.17680.55430.079*
C120.2720 (3)0.5418 (3)0.10952 (16)0.0561 (6)
H160.25200.51720.16840.067*
C130.3851 (4)0.6740 (4)−0.00145 (17)0.0606 (6)
H140.45950.7618−0.03440.073*
C140.2445 (4)0.5074 (4)−0.03878 (17)0.0613 (6)
H150.20520.4582−0.10130.074*
C150.0159 (3)0.2379 (3)0.02391 (18)0.0572 (6)
H17−0.08060.2134−0.02650.069*
H18−0.04290.22770.08010.069*
C160.0830 (3)0.0959 (3)0.00706 (15)0.0502 (6)
H190.17310.11470.05930.060*
H200.14850.1102−0.04710.060*
N10.4412 (3)0.1758 (3)0.54990 (13)0.0574 (5)
N20.7338 (3)0.3514 (3)0.61894 (15)0.0661 (6)
N30.1703 (3)0.4238 (2)0.03210 (12)0.0497 (5)
N40.4031 (3)0.6959 (3)0.09239 (14)0.0573 (5)
O10.6793 (2)−0.0244 (2)0.20167 (12)0.0587 (5)
H40.5847−0.10540.16770.088*
O20.9405 (2)0.6159 (2)0.30773 (14)0.0675 (5)
H61.03480.60680.32470.101*
O30.2755 (2)0.2535 (2)0.24808 (13)0.0643 (5)
H20.19390.14640.24260.096*
O40.9883 (2)0.9172 (3)0.23236 (15)0.0838 (6)
H210.89520.93280.24850.101*
H220.97160.82250.25300.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0515 (13)0.0396 (12)0.0590 (13)0.0239 (11)0.0033 (10)0.0078 (10)
C20.0425 (11)0.0467 (13)0.0518 (12)0.0225 (10)0.0043 (9)0.0113 (9)
C30.0374 (10)0.0401 (12)0.0503 (11)0.0165 (9)−0.0001 (9)0.0055 (9)
C40.0432 (11)0.0403 (12)0.0464 (11)0.0210 (10)0.0037 (9)0.0067 (9)
C50.0380 (11)0.0443 (13)0.0502 (11)0.0192 (10)0.0014 (9)0.0090 (9)
C60.0416 (11)0.0352 (12)0.0532 (12)0.0118 (10)0.0007 (9)0.0086 (9)
C70.0559 (14)0.0609 (16)0.0589 (14)0.0246 (13)0.0035 (11)0.0120 (12)
C80.0605 (17)0.069 (2)0.117 (2)0.0253 (16)0.0187 (17)0.0479 (18)
C90.074 (2)0.096 (2)0.0739 (17)0.0352 (19)0.0028 (15)0.0350 (16)
C100.0540 (16)0.0608 (18)0.104 (2)0.0216 (14)−0.0041 (15)0.0053 (15)
C110.0538 (14)0.0644 (17)0.0701 (15)0.0261 (13)−0.0046 (12)0.0007 (13)
C120.0588 (14)0.0445 (14)0.0537 (13)0.0177 (12)0.0049 (11)0.0011 (10)
C130.0570 (14)0.0543 (16)0.0706 (16)0.0231 (13)0.0136 (12)0.0216 (12)
C140.0626 (15)0.0632 (17)0.0537 (13)0.0266 (14)0.0070 (12)0.0095 (12)
C150.0451 (12)0.0400 (13)0.0717 (15)0.0117 (10)0.0073 (11)−0.0024 (11)
C160.0418 (12)0.0415 (13)0.0559 (12)0.0134 (10)0.0030 (10)0.0000 (10)
N10.0483 (11)0.0548 (13)0.0616 (12)0.0200 (10)−0.0006 (9)0.0080 (10)
N20.0545 (13)0.0524 (13)0.0832 (15)0.0220 (11)−0.0070 (11)0.0064 (11)
N30.0477 (10)0.0376 (11)0.0563 (11)0.0159 (9)0.0070 (9)0.0026 (8)
N40.0512 (11)0.0358 (11)0.0724 (13)0.0131 (9)0.0036 (10)0.0020 (9)
O10.0444 (9)0.0438 (9)0.0818 (12)0.0222 (8)−0.0023 (8)−0.0069 (8)
O20.0494 (10)0.0371 (9)0.1014 (13)0.0126 (8)−0.0109 (9)0.0056 (9)
O30.0432 (9)0.0548 (11)0.0984 (13)0.0274 (8)0.0079 (9)0.0107 (10)
O40.0461 (10)0.0723 (14)0.1375 (18)0.0247 (10)0.0120 (11)0.0456 (12)

Geometric parameters (Å, °)

C1—C21.373 (3)C11—C11i1.512 (5)
C1—C61.380 (3)C11—H120.9700
C1—H10.9300C11—H130.9700
C2—O31.364 (3)C12—N41.306 (3)
C2—C31.392 (3)C12—N31.336 (3)
C3—C41.390 (3)C12—H160.9300
C3—H30.9300C13—C141.335 (4)
C4—O11.364 (3)C13—N41.365 (3)
C4—C51.378 (3)C13—H140.9300
C5—C61.390 (3)C14—N31.356 (3)
C5—H50.9300C14—H150.9300
C6—O21.365 (3)C15—N31.458 (3)
C7—N21.302 (3)C15—C161.512 (3)
C7—N11.326 (3)C15—H170.9700
C7—H70.9300C15—H180.9700
C8—C91.334 (4)C16—C16ii1.516 (4)
C8—N21.364 (4)C16—H190.9700
C8—H80.9300C16—H200.9700
C9—N11.347 (4)O1—H40.8200
C9—H90.9300O2—H60.8200
C10—N11.471 (3)O3—H20.8200
C10—C111.475 (4)O4—H210.8501
C10—H100.9700O4—H220.8500
C10—H110.9700
C2—C1—C6119.1 (2)C10—C11—H13109.4
C2—C1—H1120.4C11i—C11—H13109.4
C6—C1—H1120.4H12—C11—H13108.0
O3—C2—C1117.6 (2)N4—C12—N3111.8 (2)
O3—C2—C3121.2 (2)N4—C12—H16124.1
C1—C2—C3121.2 (2)N3—C12—H16124.1
C4—C3—C2118.5 (2)C14—C13—N4109.7 (2)
C4—C3—H3120.7C14—C13—H14125.1
C2—C3—H3120.7N4—C13—H14125.1
O1—C4—C5118.36 (19)C13—C14—N3106.8 (2)
O1—C4—C3120.58 (19)C13—C14—H15126.6
C5—C4—C3121.07 (19)N3—C14—H15126.6
C4—C5—C6118.88 (19)N3—C15—C16112.84 (19)
C4—C5—H5120.6N3—C15—H17109.0
C6—C5—H5120.6C16—C15—H17109.0
O2—C6—C1117.4 (2)N3—C15—H18109.0
O2—C6—C5121.5 (2)C16—C15—H18109.0
C1—C6—C5121.1 (2)H17—C15—H18107.8
N2—C7—N1112.9 (2)C15—C16—C16ii111.3 (2)
N2—C7—H7123.6C15—C16—H19109.4
N1—C7—H7123.6C16ii—C16—H19109.4
C9—C8—N2110.0 (3)C15—C16—H20109.4
C9—C8—H8125.0C16ii—C16—H20109.4
N2—C8—H8125.0H19—C16—H20108.0
C8—C9—N1106.8 (3)C7—N1—C9106.2 (2)
C8—C9—H9126.6C7—N1—C10125.6 (2)
N1—C9—H9126.6C9—N1—C10128.2 (2)
N1—C10—C11113.9 (2)C7—N2—C8104.1 (2)
N1—C10—H10108.8C12—N3—C14106.6 (2)
C11—C10—H10108.8C12—N3—C15127.4 (2)
N1—C10—H11108.8C14—N3—C15126.0 (2)
C11—C10—H11108.8C12—N4—C13105.2 (2)
H10—C10—H11107.7C4—O1—H4109.5
C10—C11—C11i111.3 (3)C6—O2—H6109.5
C10—C11—H12109.4C2—O3—H2109.5
C11i—C11—H12109.4H21—O4—H22102.9

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H22···O20.851.942.789 (3)176
O4—H21···O1iii0.852.022.751 (3)143
O3—H2···O4iv0.821.842.658 (3)173
O2—H6···N2v0.821.842.636 (3)164
O1—H4···N4vi0.821.792.596 (3)170

Symmetry codes: (iii) x, y+1, z; (iv) x−1, y−1, z; (v) −x+2, −y+1, −z+1; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2422).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography