PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1559.
Published online 2008 July 19. doi:  10.1107/S1600536808022289
PMCID: PMC2962181

2-Bromo-1-(4-methyl­phen­yl)-3-phenyl­prop-2-en-1-one

Abstract

In the crystal structure of the title compound, C16H13BrO, the two benzene rings are twisted from each other with a dihedral angle of 52.55 (9)°. Both an intra­molecular C—H(...)Br hydrogen bond, which generates an S(6) ring motif, and a short Br(...)O contact [2.9907 (19) Å] may influence the conformation of the mol­ecule. The crystal packing is stabilized by weak inter­molecular C—H(...)O inter­actions.

Related literature

For related literature on chalcone derivatives, see: Fun et al. (2008 [triangle]); Patil et al. (2006 [triangle], 2007 [triangle]). For related literature on experimental preparation, see: Shivarama Holla et al. (2006 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1559-scheme1.jpg

Experimental

Crystal data

  • C16H13BrO
  • M r = 301.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1559-efi1.jpg
  • a = 8.7192 (2) Å
  • b = 11.5819 (2) Å
  • c = 26.4769 (6) Å
  • V = 2673.77 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.06 mm−1
  • T = 100.0 (1) K
  • 0.20 × 0.20 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.556, T max = 0.715
  • 14370 measured reflections
  • 3893 independent reflections
  • 2462 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.090
  • S = 1.00
  • 3893 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022289/lh2662sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022289/lh2662Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

As part of our crystallographic studies on chalcone derivatives (Fun et al., 2008; Patil et al., 2006,2007) the title compound (I) was synthesized and its crystal structure is reported here.

In the crystal structure of the title compound (I), the bond lengths have have normal values (Allen et al., 1987). The two benzene rings (C1—C6 & C10—C15) are twisted from each other with the dihedral angle of 52.55 (9)°.

Both an intramolecular C—H··· Br hydrogen bond, which generates an S(6) ring motif, and a short Br···O =2.9907 (19)Å contact may influence the conformation of the molecule. The crystal packing is stabilized by weak C—H···O intermolecular interactions.

Experimental

1-(4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) was prepared by a literature procedure (Shivarama Holla et al., 2006). To a solution of 1- (4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) in chloroform (25 ml), bromine (1 mmol) was added slowly with stirring. After the completion of addition of bromine (1 mmol), the reaction mixture was stirred for 24 h. Excess of chloroform was distilled off and the precipitated 2,3- dibromo-1-(4- methylphenyl)-3-phenylpropan-1-one was filtered off and dried. A mixture of dibromopropanone (1 mmol) and triethylamine(1 mmol) in dry benzene (30 ml) was added and the resultant mixture was stirred for 24 h. The excess of solvent when removed under reduced pressure gave the title compound which crystallized from acetone by slow evaporation.

Refinement

H atoms were positioned geometrically [C—H = 0.93Å and CH3=0.96 Å] and refined using a riding-model, with Uiso(H) = 1.2Ueq(C) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds and Br···O short contacts are shown as dashed lines.

Crystal data

C16H13BrOF000 = 1216
Mr = 301.17Dx = 1.496 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1664 reflections
a = 8.7192 (2) Åθ = 2.8–23.7º
b = 11.5819 (2) ŵ = 3.06 mm1
c = 26.4769 (6) ÅT = 100.0 (1) K
V = 2673.77 (10) Å3Block, colourless
Z = 80.20 × 0.20 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3893 independent reflections
Radiation source: fine-focus sealed tube2462 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.070
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −12→9
Tmin = 0.556, Tmax = 0.715k = −16→12
14370 measured reflectionsl = −36→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0317P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3893 reflectionsΔρmax = 0.43 e Å3
164 parametersΔρmin = −0.54 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.13862 (3)0.42397 (2)0.062535 (10)0.02216 (9)
O10.3082 (2)0.38663 (17)0.15935 (7)0.0253 (5)
C10.4236 (3)0.6775 (2)0.16809 (10)0.0177 (6)
H1A0.35630.70840.14440.021*
C20.4991 (4)0.7501 (3)0.20151 (10)0.0228 (7)
H2A0.48130.82920.20050.027*
C30.6008 (4)0.7049 (3)0.23638 (10)0.0262 (7)
H3A0.65120.75370.25880.031*
C40.6275 (4)0.5867 (3)0.23785 (10)0.0266 (7)
H4A0.69770.55650.26080.032*
C50.5499 (3)0.5141 (3)0.20533 (10)0.0214 (6)
H5A0.56570.43480.20710.026*
C60.4477 (3)0.5591 (2)0.16967 (9)0.0158 (6)
C70.3529 (3)0.4759 (2)0.13968 (9)0.0159 (6)
C80.3122 (3)0.5048 (2)0.08629 (9)0.0144 (6)
C90.3995 (3)0.5748 (2)0.05796 (9)0.0143 (5)
H9A0.48480.60180.07540.017*
C100.3931 (3)0.6191 (2)0.00603 (9)0.0150 (6)
C110.2836 (3)0.5907 (2)−0.03059 (10)0.0188 (6)
H11A0.20980.5348−0.02380.023*
C120.2854 (3)0.6461 (3)−0.07730 (10)0.0214 (6)
H12A0.21190.6268−0.10130.026*
C130.3942 (3)0.7295 (2)−0.08878 (9)0.0198 (6)
C140.5065 (4)0.7535 (2)−0.05306 (9)0.0208 (6)
H14A0.58290.8070−0.06050.025*
C150.5059 (3)0.6990 (2)−0.00666 (9)0.0176 (6)
H15A0.58250.71600.01660.021*
C160.3901 (4)0.7951 (3)−0.13811 (10)0.0304 (8)
H16A0.33070.7526−0.16240.046*
H16B0.49280.8047−0.15060.046*
H16C0.34440.8694−0.13280.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02062 (15)0.02191 (16)0.02395 (15)−0.00743 (14)−0.00516 (12)0.00364 (12)
O10.0315 (13)0.0193 (11)0.0252 (11)−0.0079 (10)−0.0037 (9)0.0057 (9)
C10.0193 (15)0.0186 (15)0.0152 (13)0.0013 (13)0.0009 (11)0.0003 (11)
C20.0271 (17)0.0233 (16)0.0180 (13)−0.0026 (14)0.0031 (12)−0.0054 (12)
C30.0308 (19)0.0347 (19)0.0130 (13)−0.0064 (16)−0.0013 (12)−0.0074 (12)
C40.0237 (16)0.039 (2)0.0169 (13)−0.0012 (17)−0.0041 (12)0.0032 (12)
C50.0280 (17)0.0193 (16)0.0170 (13)0.0043 (14)0.0008 (13)0.0025 (11)
C60.0167 (14)0.0197 (16)0.0110 (12)0.0007 (12)0.0033 (10)0.0019 (10)
C70.0152 (14)0.0149 (14)0.0177 (13)0.0020 (12)0.0008 (11)0.0013 (11)
C80.0141 (13)0.0136 (14)0.0155 (13)−0.0018 (11)−0.0013 (11)−0.0022 (10)
C90.0121 (13)0.0138 (13)0.0168 (12)0.0022 (12)−0.0004 (10)−0.0039 (11)
C100.0198 (16)0.0109 (13)0.0142 (12)0.0038 (12)−0.0001 (11)−0.0029 (10)
C110.0184 (15)0.0199 (16)0.0181 (13)0.0010 (13)0.0005 (11)−0.0011 (11)
C120.0199 (16)0.0273 (17)0.0171 (13)0.0038 (14)−0.0025 (11)−0.0013 (12)
C130.0250 (17)0.0218 (15)0.0125 (13)0.0074 (13)0.0041 (11)0.0027 (11)
C140.0274 (17)0.0174 (15)0.0177 (13)−0.0021 (13)0.0047 (12)0.0022 (11)
C150.0214 (15)0.0157 (15)0.0157 (13)−0.0024 (13)−0.0004 (11)−0.0033 (11)
C160.036 (2)0.0352 (19)0.0198 (14)0.0072 (16)−0.0008 (13)0.0096 (13)

Geometric parameters (Å, °)

Br1—C81.888 (3)C9—C101.469 (3)
O1—C71.221 (3)C9—H9A0.9300
C1—C21.386 (4)C10—C151.391 (4)
C1—C61.388 (4)C10—C111.400 (4)
C1—H1A0.9300C11—C121.394 (4)
C2—C31.383 (4)C11—H11A0.9300
C2—H2A0.9300C12—C131.387 (4)
C3—C41.390 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.389 (4)
C4—C51.381 (4)C13—C161.511 (4)
C4—H4A0.9300C14—C151.382 (3)
C5—C61.399 (4)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.497 (4)C16—H16A0.9600
C7—C81.496 (3)C16—H16B0.9600
C8—C91.341 (4)C16—H16C0.9600
C2—C1—C6120.5 (3)C10—C9—H9A112.3
C2—C1—H1A119.7C15—C10—C11118.1 (2)
C6—C1—H1A119.7C15—C10—C9115.5 (2)
C3—C2—C1120.1 (3)C11—C10—C9126.3 (3)
C3—C2—H2A120.0C12—C11—C10119.9 (3)
C1—C2—H2A120.0C12—C11—H11A120.1
C2—C3—C4119.9 (3)C10—C11—H11A120.1
C2—C3—H3A120.0C13—C12—C11121.5 (3)
C4—C3—H3A120.0C13—C12—H12A119.2
C5—C4—C3120.0 (3)C11—C12—H12A119.2
C5—C4—H4A120.0C12—C13—C14118.2 (2)
C3—C4—H4A120.0C12—C13—C16121.5 (3)
C4—C5—C6120.4 (3)C14—C13—C16120.3 (3)
C4—C5—H5A119.8C15—C14—C13120.7 (3)
C6—C5—H5A119.8C15—C14—H14A119.6
C1—C6—C5119.0 (3)C13—C14—H14A119.6
C1—C6—C7122.4 (2)C14—C15—C10121.4 (3)
C5—C6—C7118.0 (2)C14—C15—H15A119.3
O1—C7—C8121.1 (2)C10—C15—H15A119.3
O1—C7—C6119.7 (2)C13—C16—H16A109.5
C8—C7—C6119.2 (2)C13—C16—H16B109.5
C9—C8—C7122.0 (2)H16A—C16—H16B109.5
C9—C8—Br1124.7 (2)C13—C16—H16C109.5
C7—C8—Br1113.19 (19)H16A—C16—H16C109.5
C8—C9—C10135.5 (3)H16B—C16—H16C109.5
C8—C9—H9A112.3
C6—C1—C2—C30.8 (4)C6—C7—C8—Br1−158.5 (2)
C1—C2—C3—C40.1 (4)C7—C8—C9—C10179.8 (3)
C2—C3—C4—C5−1.5 (4)Br1—C8—C9—C105.1 (5)
C3—C4—C5—C62.0 (4)C8—C9—C10—C15175.3 (3)
C2—C1—C6—C5−0.3 (4)C8—C9—C10—C11−3.2 (5)
C2—C1—C6—C7171.0 (3)C15—C10—C11—C12−3.1 (4)
C4—C5—C6—C1−1.1 (4)C9—C10—C11—C12175.3 (3)
C4—C5—C6—C7−172.8 (3)C10—C11—C12—C130.3 (4)
C1—C6—C7—O1−136.9 (3)C11—C12—C13—C142.5 (4)
C5—C6—C7—O134.5 (4)C11—C12—C13—C16−176.0 (3)
C1—C6—C7—C842.0 (4)C12—C13—C14—C15−2.4 (4)
C5—C6—C7—C8−146.6 (3)C16—C13—C14—C15176.1 (3)
O1—C7—C8—C9−154.8 (3)C13—C14—C15—C10−0.5 (4)
C6—C7—C8—C926.3 (4)C11—C10—C15—C143.2 (4)
O1—C7—C8—Br120.4 (3)C9—C10—C15—C14−175.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.543.163 (3)124
C11—H11A···Br10.932.693.377 (3)131

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2662).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Jebas, S. R., Razak, I. A., Karthikeyan, M. S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1039. [PMC free article] [PubMed]
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem.41, 657–663. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography