PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1550–o1551.
Published online 2008 July 19. doi:  10.1107/S160053680802206X
PMCID: PMC2962174

Ethyl 4-(tert-butyl­amino)-3-nitro­benzoate

Abstract

In the title compound, C13H18N2O4, intra­molecular N—H(...)O, N—H(...)N and C—H(...)O (× 3) hydrogen bonds generate S(6) and S(5) ring motifs. There are two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The nitro group is coplanar with the benzene ring, with O—N—C—C torsion angles of −0.33 (13) and 0.93 (14)° in mol­ecules A and B, respectively. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular C—H(...)O hydrogen bonds. In addition, the crystal structure is stabilized by π–π inter­actions with centroid–centroid distances ranging from 3.7853 (6) to 3.8625 (6) Å.

Related literature

For literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For values of bond lengths, see: Allen et al. (1987 [triangle]). For related literature, see, for example: Göker et al. (1998 [triangle]); Anderson (2005 [triangle]); Kakei et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1550-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O4
  • M r = 266.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1550-efi1.jpg
  • a = 16.0471 (5) Å
  • b = 6.6417 (2) Å
  • c = 30.0180 (9) Å
  • β = 121.688 (2)°
  • V = 2722.37 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100.0 (1) K
  • 0.51 × 0.43 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.879, T max = 0.984
  • 63326 measured reflections
  • 8141 independent reflections
  • 6368 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.133
  • S = 1.04
  • 8141 reflections
  • 351 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected centroid–centroid distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802206X/at2594sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802206X/at2594Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Malaysian Government and Universiti Sains Malaysia (USM) for financial support given under the USM Research University funding (1001/PFARMASI/815026). HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/ 613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

As a part of our ongoing studies on new nitro benzoic acid derivatives, we have synthesized the title compound (I) employing a modified protocol of previous procedure (Göker et al., 1998). The nitro benzoic acid intermediates are a convenient starting material for the synthesis of heterocycles targeting important biological processes, e.g. antifungal (Fluconazole) (Anderson, 2005) and proton pump inhibitor (Omeprazole) (Kakei et al., 1993). The crystal structure of the tert-butylamino functionalized nitro benzoic acid (I) has been determined, and herein, we present a full report on its crystal structure.

In the title compound (I) (Fig. 1), intramolecular N—H···O (x 2), N—H···N (x 2), and C—H···O (x 3) hydrogen bonds (Table 2) generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). There are two crystallographically independent molecules, A and B in the asymmetric unit of the title compound. The nitro group is coplanar with the benzene ring with torsion angle of -0.33 (13) and 0.93 (14)° in the molecule A and B, respectively. In the crystal structure neighbouring molecules are linked together by intermolecular C—H···O hydrogen bonds (Table 1). In the crystal packing (Table 2 & Fig. 2), molecules are stacked down the b axis, being consolidated by π–π interactions with centroid to centroid distances ranging from 3.7853 (6) – 3.8625 (6) Å.

The crystal structure is stabilized by intramolecular N—H···O (x 2), N—H···N (x 2), C—H···O (x 3), and intermolecular C—H···O (x 5) hydrogen bonds and π–π interactions.

Experimental

Ethyl 4-fluoro-3-nitrobenzoate (200 mg, 0.93 mmol) was dissolved in dry dichloromethane (10 ml). N, N-diisopropylethylamine (DIPEA) (0.20 ml, 1.12 mmol) was added to the stirred mixture. Then, tert-butylamine (0.11 ml, 1.03 mmol) was added dropwise using syringe and stirred at room temperature under N2 overnight. After completion of the reaction, the mixture was washed with 10% NaCO3 (10 ml). The aqueous layer was washed with dichloromethane (3 x 15 ml). The organic layers were collected and dried over MgSO4 (anhydrous). The solvent was removed under reduced pressure to yield the crude product. Recrystallisation with hot hexane revealed the title compound (I) as bright yellow crystals.

Refinement

The H-atoms attached to N2A and N2B were located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–98 Å] and refined using a riding model. A rotating-group model was used for the methyl groups. The highest peak is located 0.63 Å from C6B and the deepest hole is located 0.59 Å from N1A.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), showing stacking arrangement viewed down the b-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

Crystal data

C13H18N2O4F000 = 1136
Mr = 266.29Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9969 reflections
a = 16.0471 (5) Åθ = 2.5–30.1º
b = 6.6417 (2) ŵ = 0.10 mm1
c = 30.0180 (9) ÅT = 100.0 (1) K
β = 121.688 (2)ºPlate, yellow
V = 2722.37 (14) Å30.51 × 0.43 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8141 independent reflections
Radiation source: fine-focus sealed tube6368 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 100.0(1) Kθmax = 30.3º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −21→22
Tmin = 0.879, Tmax = 0.984k = −9→9
63326 measured reflectionsl = −41→42

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.133  w = 1/[σ2(Fo2) + (0.0652P)2 + 0.787P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8141 reflectionsΔρmax = 0.53 e Å3
351 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A1.01188 (6)0.50707 (13)0.90700 (3)0.02027 (18)
O2A0.87073 (6)0.53054 (14)0.90534 (3)0.02371 (19)
O3A0.57249 (6)0.54152 (13)0.73478 (3)0.02243 (18)
O4A0.56803 (6)0.54680 (13)0.66152 (3)0.02250 (18)
N1A0.61441 (6)0.54228 (13)0.71013 (4)0.01589 (18)
N2A0.73120 (6)0.54415 (13)0.66080 (3)0.01583 (18)
H2NA0.66820.54970.64440.019*
C1A0.76647 (7)0.53258 (15)0.79329 (4)0.0143 (2)
H1A0.72810.53350.80890.017*
C2A0.72036 (7)0.53705 (15)0.73898 (4)0.01349 (19)
C3A0.77441 (7)0.53716 (14)0.71324 (4)0.01347 (19)
C4A0.87825 (7)0.52932 (15)0.74731 (4)0.0151 (2)
H4A0.91800.52710.73250.018*
C5A0.92253 (7)0.52490 (15)0.80055 (4)0.0149 (2)
H5A0.99200.52040.82170.018*
C6A0.86747 (7)0.52682 (15)0.82473 (4)0.0142 (2)
C7A0.91408 (8)0.52224 (16)0.88226 (4)0.0159 (2)
C8A1.06291 (8)0.5008 (2)0.96363 (4)0.0252 (3)
H8A1.04120.38280.97510.030*
H8B1.04890.62420.97710.030*
C9A1.17025 (9)0.4861 (2)0.98412 (5)0.0347 (3)
H9A1.20690.48771.02250.052*
H9B1.19040.60060.97130.052*
H9C1.18370.36030.97200.052*
C10A0.77667 (8)0.54745 (16)0.62878 (4)0.0163 (2)
C11A0.83246 (8)0.35165 (17)0.63510 (4)0.0203 (2)
H11A0.78770.23700.62540.030*
H11B0.88610.33730.67160.030*
H11C0.85930.35550.61240.030*
C12A0.68959 (9)0.56150 (19)0.57218 (4)0.0233 (2)
H12A0.64580.44650.56470.035*
H12B0.71360.56000.54810.035*
H12C0.65370.68690.56760.035*
C13A0.84047 (8)0.73502 (17)0.64034 (4)0.0195 (2)
H13A0.89270.73590.67740.029*
H13B0.80000.85600.63240.029*
H13C0.86950.73310.61860.029*
O1B0.49200 (5)0.43211 (13)0.10402 (3)0.02139 (18)
O2B0.63293 (6)0.45058 (13)0.10484 (3)0.02286 (18)
O3B0.93204 (6)0.47400 (13)0.27341 (3)0.02111 (18)
O4B0.93898 (6)0.47557 (13)0.34743 (3)0.02151 (18)
N1B0.89147 (6)0.47252 (13)0.29872 (4)0.01529 (18)
N2B0.77682 (6)0.47199 (14)0.34950 (3)0.01565 (18)
H2NB0.84070.47670.36710.019*
C1B0.73817 (7)0.46115 (15)0.21633 (4)0.01401 (19)
H1B0.77570.46080.20020.017*
C2B0.78566 (7)0.46722 (15)0.27069 (4)0.01293 (19)
C3B0.73273 (7)0.46737 (15)0.29702 (4)0.01340 (19)
C4B0.62889 (8)0.46322 (16)0.26366 (4)0.0157 (2)
H4B0.59000.46450.27900.019*
C5B0.58317 (7)0.45740 (15)0.21029 (4)0.0154 (2)
H5B0.51370.45450.18950.019*
C6B0.63721 (7)0.45564 (15)0.18553 (4)0.01401 (19)
C7B0.58976 (8)0.44669 (16)0.12800 (4)0.0168 (2)
C8B0.43816 (8)0.4179 (2)0.04737 (4)0.0260 (3)
H8C0.37510.34840.03500.031*
H8D0.47620.33700.03650.031*
C9B0.41883 (9)0.6226 (2)0.02271 (5)0.0302 (3)
H9D0.38040.6089−0.01550.045*
H9E0.48120.68880.03350.045*
H9F0.38220.70380.03400.045*
C10B0.73206 (8)0.46992 (16)0.38189 (4)0.0172 (2)
C11B0.67381 (8)0.27595 (17)0.37340 (4)0.0217 (2)
H11D0.61890.26980.33700.032*
H11E0.64870.27470.39690.032*
H11F0.71660.15930.38090.032*
C12B0.81999 (9)0.47351 (19)0.43837 (4)0.0246 (2)
H12D0.85820.59640.44410.037*
H12E0.86130.35550.44450.037*
H12F0.79660.47100.46270.037*
C13B0.66997 (8)0.65807 (18)0.37269 (5)0.0222 (2)
H13D0.71080.77840.38060.033*
H13E0.64330.65410.39550.033*
H13F0.61600.66230.33600.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0132 (3)0.0327 (5)0.0134 (4)0.0004 (3)0.0059 (3)−0.0014 (3)
O2A0.0181 (4)0.0365 (5)0.0190 (4)0.0000 (3)0.0114 (3)−0.0013 (3)
O3A0.0154 (4)0.0298 (5)0.0260 (4)0.0006 (3)0.0135 (3)0.0003 (3)
O4A0.0136 (4)0.0309 (5)0.0186 (4)0.0002 (3)0.0055 (3)−0.0002 (3)
N1A0.0126 (4)0.0142 (4)0.0205 (4)−0.0004 (3)0.0084 (3)−0.0004 (3)
N2A0.0120 (4)0.0192 (4)0.0151 (4)0.0004 (3)0.0062 (3)0.0003 (3)
C1A0.0149 (5)0.0111 (4)0.0189 (5)−0.0006 (3)0.0104 (4)−0.0004 (4)
C2A0.0102 (4)0.0119 (5)0.0175 (5)0.0002 (3)0.0068 (4)0.0002 (4)
C3A0.0135 (4)0.0099 (4)0.0168 (5)−0.0006 (3)0.0078 (4)−0.0003 (3)
C4A0.0127 (4)0.0155 (5)0.0182 (5)0.0003 (4)0.0088 (4)0.0005 (4)
C5A0.0124 (4)0.0145 (5)0.0175 (5)0.0003 (4)0.0076 (4)0.0006 (4)
C6A0.0147 (5)0.0131 (5)0.0148 (5)−0.0004 (4)0.0077 (4)−0.0005 (4)
C7A0.0140 (5)0.0160 (5)0.0170 (5)−0.0009 (4)0.0075 (4)−0.0013 (4)
C8A0.0188 (5)0.0421 (7)0.0122 (5)0.0004 (5)0.0065 (4)−0.0021 (5)
C9A0.0184 (6)0.0630 (10)0.0180 (6)0.0030 (6)0.0063 (5)−0.0027 (6)
C10A0.0161 (5)0.0183 (5)0.0154 (5)−0.0005 (4)0.0088 (4)0.0001 (4)
C11A0.0208 (5)0.0181 (5)0.0240 (5)−0.0002 (4)0.0131 (4)−0.0028 (4)
C12A0.0212 (5)0.0303 (6)0.0157 (5)−0.0009 (5)0.0078 (4)−0.0005 (4)
C13A0.0205 (5)0.0190 (5)0.0203 (5)−0.0011 (4)0.0116 (4)0.0018 (4)
O1B0.0133 (4)0.0343 (5)0.0138 (4)−0.0022 (3)0.0053 (3)0.0013 (3)
O2B0.0181 (4)0.0339 (5)0.0178 (4)0.0012 (3)0.0102 (3)−0.0004 (3)
O3B0.0150 (4)0.0280 (4)0.0238 (4)0.0003 (3)0.0127 (3)0.0009 (3)
O4B0.0136 (4)0.0302 (5)0.0164 (4)0.0002 (3)0.0049 (3)0.0004 (3)
N1B0.0135 (4)0.0134 (4)0.0186 (4)0.0001 (3)0.0081 (3)0.0002 (3)
N2B0.0129 (4)0.0195 (4)0.0143 (4)0.0001 (3)0.0070 (3)0.0001 (3)
C1B0.0144 (4)0.0125 (5)0.0168 (5)0.0004 (3)0.0093 (4)0.0006 (4)
C2B0.0108 (4)0.0113 (4)0.0166 (5)0.0003 (3)0.0072 (4)0.0007 (3)
C3B0.0147 (5)0.0101 (4)0.0151 (5)0.0004 (3)0.0077 (4)0.0010 (3)
C4B0.0137 (4)0.0173 (5)0.0185 (5)0.0004 (4)0.0100 (4)0.0005 (4)
C5B0.0121 (4)0.0151 (5)0.0185 (5)0.0000 (4)0.0076 (4)0.0007 (4)
C6B0.0135 (4)0.0133 (5)0.0148 (5)0.0000 (3)0.0071 (4)0.0009 (3)
C7B0.0152 (5)0.0170 (5)0.0163 (5)0.0001 (4)0.0070 (4)0.0007 (4)
C8B0.0176 (5)0.0410 (7)0.0148 (5)−0.0037 (5)0.0055 (4)−0.0017 (5)
C9B0.0236 (6)0.0469 (8)0.0197 (6)0.0022 (5)0.0111 (5)0.0074 (5)
C10B0.0194 (5)0.0187 (5)0.0158 (5)0.0009 (4)0.0107 (4)0.0007 (4)
C11B0.0255 (6)0.0209 (5)0.0226 (5)−0.0013 (4)0.0154 (5)0.0024 (4)
C12B0.0265 (6)0.0306 (6)0.0152 (5)0.0009 (5)0.0099 (5)0.0008 (4)
C13B0.0242 (5)0.0205 (5)0.0251 (6)0.0019 (4)0.0151 (5)−0.0022 (4)

Geometric parameters (Å, °)

O1A—C7A1.3418 (13)O1B—C7B1.3424 (13)
O1A—C8A1.4489 (13)O1B—C8B1.4503 (13)
O2A—C7A1.2136 (13)O2B—C7B1.2125 (13)
O3A—N1A1.2340 (12)O3B—N1B1.2332 (12)
O4A—N1A1.2424 (12)O4B—N1B1.2443 (12)
N1A—C2A1.4474 (13)N1B—C2B1.4462 (13)
N2A—C3A1.3470 (13)N2B—C3B1.3463 (13)
N2A—C10A1.4810 (13)N2B—C10B1.4816 (13)
N2A—H2NA0.8617N2B—H2NB0.8733
C1A—C6A1.3827 (14)C1B—C6B1.3809 (14)
C1A—C2A1.3925 (14)C1B—C2B1.3924 (14)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.4328 (14)C2B—C3B1.4321 (14)
C3A—C4A1.4265 (14)C3B—C4B1.4238 (14)
C4A—C5A1.3663 (14)C4B—C5B1.3683 (14)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.4076 (14)C5B—C6B1.4076 (14)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.4784 (14)C6B—C7B1.4778 (14)
C8A—C9A1.4973 (17)C8B—C9B1.5003 (19)
C8A—H8A0.9900C8B—H8C0.9900
C8A—H8B0.9900C8B—H8D0.9900
C9A—H9A0.9800C9B—H9D0.9800
C9A—H9B0.9800C9B—H9E0.9800
C9A—H9C0.9800C9B—H9F0.9800
C10A—C13A1.5320 (15)C10B—C13B1.5302 (15)
C10A—C11A1.5331 (15)C10B—C11B1.5323 (15)
C10A—C12A1.5343 (15)C10B—C12B1.5338 (15)
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—H13A0.9800C13B—H13D0.9800
C13A—H13B0.9800C13B—H13E0.9800
C13A—H13C0.9800C13B—H13F0.9800
Cg1···Cg2i3.7853 (6)Cg1···Cg2ii3.8625 (6)
C7A—O1A—C8A115.30 (9)C7B—O1B—C8B116.24 (9)
O3A—N1A—O4A121.71 (9)O3B—N1B—O4B121.87 (9)
O3A—N1A—C2A118.70 (9)O3B—N1B—C2B118.70 (9)
O4A—N1A—C2A119.59 (9)O4B—N1B—C2B119.43 (9)
C3A—N2A—C10A129.22 (9)C3B—N2B—C10B129.04 (9)
C3A—N2A—H2NA113.4C3B—N2B—H2NB115.9
C10A—N2A—H2NA117.3C10B—N2B—H2NB115.0
C6A—C1A—C2A120.74 (9)C6B—C1B—C2B120.85 (9)
C6A—C1A—H1A119.6C6B—C1B—H1B119.6
C2A—C1A—H1A119.6C2B—C1B—H1B119.6
C1A—C2A—C3A122.10 (9)C1B—C2B—C3B121.91 (9)
C1A—C2A—N1A115.83 (9)C1B—C2B—N1B115.79 (9)
C3A—C2A—N1A122.07 (9)C3B—C2B—N1B122.30 (9)
N2A—C3A—C4A121.97 (9)N2B—C3B—C4B121.65 (9)
N2A—C3A—C2A122.98 (9)N2B—C3B—C2B123.11 (9)
C4A—C3A—C2A115.05 (9)C4B—C3B—C2B115.23 (9)
C5A—C4A—C3A122.23 (10)C5B—C4B—C3B122.25 (9)
C5A—C4A—H4A118.9C5B—C4B—H4B118.9
C3A—C4A—H4A118.9C3B—C4B—H4B118.9
C4A—C5A—C6A121.42 (9)C4B—C5B—C6B121.22 (9)
C4A—C5A—H5A119.3C4B—C5B—H5B119.4
C6A—C5A—H5A119.3C6B—C5B—H5B119.4
C1A—C6A—C5A118.45 (9)C1B—C6B—C5B118.54 (9)
C1A—C6A—C7A119.36 (9)C1B—C6B—C7B119.12 (9)
C5A—C6A—C7A122.19 (9)C5B—C6B—C7B122.34 (9)
O2A—C7A—O1A122.82 (10)O2B—C7B—O1B123.56 (10)
O2A—C7A—C6A125.16 (10)O2B—C7B—C6B124.77 (10)
O1A—C7A—C6A112.03 (9)O1B—C7B—C6B111.67 (9)
O1A—C8A—C9A107.65 (9)O1B—C8B—C9B111.18 (11)
O1A—C8A—H8A110.2O1B—C8B—H8C109.4
C9A—C8A—H8A110.2C9B—C8B—H8C109.4
O1A—C8A—H8B110.2O1B—C8B—H8D109.4
C9A—C8A—H8B110.2C9B—C8B—H8D109.4
H8A—C8A—H8B108.5H8C—C8B—H8D108.0
C8A—C9A—H9A109.5C8B—C9B—H9D109.5
C8A—C9A—H9B109.5C8B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C8A—C9A—H9C109.5C8B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
N2A—C10A—C13A111.31 (9)N2B—C10B—C13B111.59 (9)
N2A—C10A—C11A111.21 (9)N2B—C10B—C11B111.24 (9)
C13A—C10A—C11A112.61 (9)C13B—C10B—C11B111.97 (9)
N2A—C10A—C12A104.30 (8)N2B—C10B—C12B104.10 (9)
C13A—C10A—C12A108.24 (9)C13B—C10B—C12B108.70 (9)
C11A—C10A—C12A108.76 (9)C11B—C10B—C12B108.88 (9)
C10A—C11A—H11A109.5C10B—C11B—H11D109.5
C10A—C11A—H11B109.5C10B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C10A—C11A—H11C109.5C10B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C10A—C12A—H12A109.5C10B—C12B—H12D109.5
C10A—C12A—H12B109.5C10B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C10A—C12A—H12C109.5C10B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C10A—C13A—H13A109.5C10B—C13B—H13D109.5
C10A—C13A—H13B109.5C10B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C10A—C13A—H13C109.5C10B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5

Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4A0.861.932.6299 (15)138
N2A—H2NA···N1A0.862.542.9361 (15)109
N2B—H2NB···O4B0.871.952.6355 (15)134
N2B—H2NB···N1B0.872.582.9419 (15)106
C1A—H1A···O3A0.952.312.6522 (16)100
C1B—H1B···O3B0.952.312.6498 (16)100
C4A—H4A···O3Biii0.952.503.4124 (17)160
C4B—H4B···O3Aiv0.952.423.2566 (18)147
C5A—H5A···O1A0.952.412.7326 (13)100
C11A—H11A···O2Bv0.982.553.4714 (17)157
C11B—H11F···O2Aii0.982.523.4446 (17)158
C13B—H13D···O2Avi0.982.603.5071 (17)154

Symmetry codes: (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (vi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2594).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Anderson, J. B. (2005). Nat. Rev. Microbiol.3, 547–556. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Göker, H., Tunçbilek, M., Ayhan, G. & Altanlar, N. (1998). Farmaco, 53, 415–420. [PubMed]
  • Kakei, N., Ichinose, M., Tsukada, S., Tatematsu, M., Tezuka, N., Yahagi, N., Matsushima, M., Miki, K., Kurokawa, K., Takahashi, K. & Fukamachi, H. (1993). Biochem. Biophys. Res. Commun.195, 997–1004. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography