PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1549.
Published online 2008 July 19. doi:  10.1107/S1600536808021089
PMCID: PMC2962173

(S)-2-[(2-Ammonio­phenyl)­sulfanyl­methyl]pyrrolidinium dibromide

Abstract

In the title compound, C11H18N2S2+·2Br, the pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å out of the plane of the other four atoms. The methyl­ene C atom, which connects the pyrrolidinium ring and the thio­ether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction as the flap C atom. The plane of four pyrrolidinium atoms is almost perpendicular to the benzene ring [dihedral angle = 75.02 (4)°]. The crystal structure is stabilized by hydrogen bonds between the N and Br atoms.

Related literature

The synthesis of (S)-(+)-2-bromo­methyl­pyrrolidine hydro­bromide was described by Xu et al. (2006 [triangle]). The development of asymmetric organocatalysis was reviewed by Seayad & List (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1549-scheme1.jpg

Experimental

Crystal data

  • C11H18N2S2+·2Br
  • M r = 370.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1549-efi1.jpg
  • a = 7.9399 (9) Å
  • b = 10.8427 (13) Å
  • c = 17.658 (2) Å
  • V = 1520.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.45 mm−1
  • T = 293 (2) K
  • 0.49 × 0.42 × 0.36 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.103, T max = 0.137
  • 8969 measured reflections
  • 3311 independent reflections
  • 1808 reflections with I > 2σ(I)
  • R int = 0.136

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.134
  • S = 0.83
  • 3311 reflections
  • 158 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.50 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1394 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021089/pk2105sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021089/pk2105Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent years, the field of asymmetric organocatalysis has developed rapidly, attracting an increasing number of research groups around the world (Seayad & List, 2005). The title compound, readily synthesized from commercially available L-proline and 2-aminobenzenethiol, could act as an organocatalyst in the Michael addition of ketones to nitrostyrenes. The reaction gave the desired Michael adducts in good yields and high enantioselectivities. The structure of (S)-2-((2-ammoniophenylthio)methyl)pyrrolidinium dibromide is shown in Fig. 1.

The crystal is built of doubly protonated cations and bromide anions. The pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å from the remaining four atoms of the pyrrolidine which are almost coplanar. The methylene C atom, which connects the pyrrolidinium ring and the thioether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction, as the flap C atom. The plane of four pyrrolidinium ring atoms is almost perpendicular to the benzene ring [dihedral angle 75.02 (4) °]. The crystal structure is stabilized by hydrogen-bonds between the N and Br atoms. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups is shown in Fig. 2.

Experimental

The title compound was synthesized by treating 2-aminobenzenethiol (1.25 g,10 mmol) with (S)-2-bromomethylpyrrolidine hydrobromide (2.47 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 87%). The compound (S)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (Car), C—H = 0.98 Å (R3CH), C—H = 0.97 Å (R2CH2) and refined using a riding model, with Uiso(H)=1.2eq(C). NH3 hydrogen atoms were located in a difference map and refined with an N—H distance restraint of 0.83 (1) Å, with U value being 0.06, 0.06, 0.09 respectively, while NH2 hydrogens were treated using a riding model with N—H distance of 0.90 Å.

Figures

Fig. 1.
The asymmetric unit of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups.

Crystal data

C11H18N2S2+·2BrF000 = 736
Mr = 370.15Dx = 1.617 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1525 reflections
a = 7.9399 (9) Åθ = 4.4–38.3º
b = 10.8427 (13) ŵ = 5.45 mm1
c = 17.658 (2) ÅT = 293 (2) K
V = 1520.2 (3) Å3Prismatic, colorless
Z = 40.49 × 0.42 × 0.37 mm

Data collection

Bruker SMART CCD area-detector diffractometer3311 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.136
T = 293(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.103, Tmax = 0.137k = −13→12
8969 measured reflectionsl = −22→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058  w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 0.83Δρmax = 0.67 e Å3
3311 reflectionsΔρmin = −0.50 e Å3
158 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0005 (1)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1394 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.30470 (12)−0.24305 (9)−0.08797 (5)0.0559 (3)
Br2−0.38177 (12)0.34415 (8)0.06967 (5)0.0526 (3)
S1−0.0443 (3)0.1034 (2)0.14946 (13)0.0524 (6)
N10.0399 (9)0.3571 (6)0.0600 (4)0.0502 (18)
H1A0.06360.29390.02880.060*
H1B−0.07280.36500.06300.060*
N20.1147 (12)−0.0815 (8)0.0452 (5)0.0487 (18)
C10.1159 (18)0.4726 (9)0.0308 (7)0.083 (3)
H1C0.02960.52730.01110.100*
H1D0.19590.4549−0.00930.100*
C20.2025 (14)0.5297 (9)0.0973 (7)0.072 (3)
H2A0.32370.52250.09210.087*
H2B0.17350.61640.10130.087*
C30.1443 (14)0.4625 (9)0.1640 (6)0.068 (3)
H3A0.04200.49900.18400.081*
H3B0.22970.46270.20330.081*
C40.1120 (12)0.3339 (8)0.1362 (4)0.049 (2)
H40.21940.29010.13090.059*
C5−0.0079 (11)0.2577 (8)0.1852 (4)0.052 (2)
H5A−0.11500.30040.18850.062*
H5B0.03810.25190.23590.062*
C60.1553 (11)0.0316 (8)0.1640 (5)0.047 (2)
C70.2504 (11)0.0537 (9)0.2270 (5)0.056 (3)
H70.21170.10920.26320.068*
C80.4032 (13)−0.0049 (10)0.2382 (6)0.073 (3)
H80.46800.01380.28050.087*
C90.4579 (14)−0.0887 (10)0.1879 (6)0.071 (3)
H90.5602−0.12850.19560.085*
C100.3611 (11)−0.1161 (8)0.1239 (5)0.053 (2)
H100.3980−0.17500.08930.063*
C110.2112 (12)−0.0555 (8)0.1123 (5)0.045 (2)
H2C0.157 (10)−0.127 (6)0.012 (4)0.06 (3)*
H2D0.094 (12)−0.032 (6)0.010 (3)0.06 (3)*
H2E0.043 (10)−0.135 (7)0.054 (6)0.09 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0514 (6)0.0627 (5)0.0536 (6)0.0081 (5)−0.0055 (4)−0.0024 (5)
Br20.0526 (6)0.0614 (5)0.0438 (5)0.0072 (5)−0.0041 (4)−0.0022 (5)
S10.0412 (14)0.0682 (15)0.0479 (14)0.0052 (12)0.0015 (11)0.0049 (12)
N10.045 (4)0.060 (4)0.046 (4)0.007 (4)0.004 (3)−0.001 (4)
N20.054 (5)0.048 (5)0.044 (5)−0.003 (5)0.002 (5)−0.002 (4)
C10.105 (10)0.061 (7)0.084 (8)0.010 (7)0.005 (8)0.006 (6)
C20.055 (7)0.055 (6)0.107 (10)0.005 (5)0.010 (7)−0.017 (6)
C30.062 (8)0.074 (7)0.067 (7)−0.006 (6)−0.007 (6)−0.021 (6)
C40.038 (5)0.066 (6)0.044 (5)0.015 (5)0.000 (4)0.003 (5)
C50.053 (6)0.070 (6)0.033 (4)0.019 (6)0.002 (4)−0.009 (5)
C60.033 (6)0.062 (6)0.046 (5)0.008 (4)−0.006 (4)0.010 (4)
C70.043 (6)0.077 (7)0.048 (6)0.012 (5)0.003 (5)0.000 (5)
C80.062 (8)0.102 (8)0.055 (7)0.010 (7)−0.022 (6)−0.008 (6)
C90.054 (7)0.103 (8)0.056 (7)0.028 (7)−0.005 (6)−0.001 (6)
C100.046 (6)0.061 (6)0.051 (5)0.022 (5)0.011 (5)0.010 (4)
C110.044 (6)0.059 (6)0.031 (5)0.000 (5)0.000 (4)0.007 (4)

Geometric parameters (Å, °)

Br1—H2C2.47 (7)C3—C41.500 (12)
Br2—H1B2.4665C3—H3A0.9700
S1—C61.784 (8)C3—H3B0.9700
S1—C51.811 (9)C4—C51.529 (12)
N1—C11.483 (12)C4—H40.9800
N1—C41.484 (10)C5—H5A0.9700
N1—H1A0.9000C5—H5B0.9700
N1—H1B0.9000C6—C71.366 (11)
N2—C111.438 (11)C6—C111.388 (11)
N2—H2C0.84 (7)C7—C81.383 (13)
N2—H2D0.84 (6)C7—H70.9300
N2—H2E0.83 (8)C8—C91.343 (13)
C1—C21.495 (14)C8—H80.9300
C1—H1C0.9700C9—C101.399 (13)
C1—H1D0.9700C9—H90.9300
C2—C31.460 (13)C10—C111.374 (12)
C2—H2A0.9700C10—H100.9300
C2—H2B0.9700
C6—S1—C5102.2 (4)N1—C4—C3101.8 (7)
C1—N1—C4107.5 (8)N1—C4—C5111.3 (7)
C1—N1—H1A110.2C3—C4—C5115.1 (8)
C4—N1—H1A110.2N1—C4—H4109.4
C1—N1—H1B110.2C3—C4—H4109.4
C4—N1—H1B110.2C5—C4—H4109.4
H1A—N1—H1B108.5C4—C5—S1113.7 (6)
C11—N2—H2C118 (6)C4—C5—H5A108.8
C11—N2—H2D126 (6)S1—C5—H5A108.8
H2C—N2—H2D87 (7)C4—C5—H5B108.8
C11—N2—H2E111 (7)S1—C5—H5B108.8
H2C—N2—H2E90 (9)H5A—C5—H5B107.7
H2D—N2—H2E117 (10)C7—C6—C11118.6 (8)
N1—C1—C2105.3 (9)C7—C6—S1122.1 (7)
N1—C1—H1C110.7C11—C6—S1119.1 (7)
C2—C1—H1C110.7C6—C7—C8121.3 (9)
N1—C1—H1D110.7C6—C7—H7119.3
C2—C1—H1D110.7C8—C7—H7119.3
H1C—C1—H1D108.8C9—C8—C7120.0 (10)
C3—C2—C1106.3 (8)C9—C8—H8120.0
C3—C2—H2A110.5C7—C8—H8120.0
C1—C2—H2A110.5C8—C9—C10120.1 (9)
C3—C2—H2B110.5C8—C9—H9120.0
C1—C2—H2B110.5C10—C9—H9120.0
H2A—C2—H2B108.7C11—C10—C9119.6 (9)
C2—C3—C4104.7 (7)C11—C10—H10120.2
C2—C3—H3A110.8C9—C10—H10120.2
C4—C3—H3A110.8C10—C11—C6120.3 (8)
C2—C3—H3B110.8C10—C11—N2119.4 (8)
C4—C3—H3B110.8C6—C11—N2120.3 (8)
H3A—C3—H3B108.9
C4—N1—C1—C2−12.2 (11)C11—C6—C7—C82.8 (14)
N1—C1—C2—C3−12.1 (11)S1—C6—C7—C8178.6 (8)
C1—C2—C3—C431.4 (11)C6—C7—C8—C9−2.4 (15)
C1—N1—C4—C330.7 (10)C7—C8—C9—C100.5 (16)
C1—N1—C4—C5153.8 (8)C8—C9—C10—C111.0 (15)
C2—C3—C4—N1−38.0 (10)C9—C10—C11—C6−0.6 (13)
C2—C3—C4—C5−158.6 (8)C9—C10—C11—N2178.2 (9)
N1—C4—C5—S164.5 (8)C7—C6—C11—C10−1.3 (12)
C3—C4—C5—S1179.7 (7)S1—C6—C11—C10−177.2 (6)
C6—S1—C5—C469.0 (6)C7—C6—C11—N2180.0 (8)
C5—S1—C6—C738.7 (8)S1—C6—C11—N24.1 (11)
C5—S1—C6—C11−145.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2E···Br1i0.83 (8)2.39 (8)3.201 (9)169 (10)
N2—H2D···Br2ii0.84 (6)2.48 (4)3.277 (9)159 (8)
N2—H2C···Br10.84 (7)2.47 (7)3.298 (9)173 (8)
N1—H1B···Br20.902.473.355 (7)169
N1—H1A···Br2ii0.902.333.224 (7)170

Symmetry codes: (i) x−1/2, −y−1/2, −z; (ii) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2105).

References

  • Bruker (2000). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Seayad, J. & List, B. (2005). Org. Biol. Chem.3, 719–724. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569–2572.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography