PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1543.
Published online 2008 July 19. doi:  10.1107/S1600536808016632
PMCID: PMC2962167

5,6-Di­oxo-1,10-phenanthrolin-1-ium trifluoro­methane­sulfonate

Abstract

In the structure of the title salt, C12H7N2O2 +·CF3SO3 , the cation participates in hydrogen bonding with the dione group of an adjacent cation as well as with the trifluoro­methane­sulfonate anion. In addition, there is an extensive network of C—H(...)O inter­actions between the cations and anions. There are two formula units per asymmetric unit. The crystal studied exhibits inversion twinning.

Related literature

For literature on the coordinating ability of phendione, see: Calderazzo et al. (1999 [triangle], 2002 [triangle]); Calucci et al. (2006 [triangle]); Fox et al. (1991 [triangle]); Galet et al. (2005 [triangle]); Lei et al. (1996 [triangle]); Okamura et al. (2006 [triangle]); Paw & Eisenberg (1997 [triangle]); Ruiz et al. (1999 [triangle]); Shavaleev et al. (2003a [triangle],b [triangle]); Ma et al. (2002 [triangle]). For our own reports on phendione, see: Onuegbu et al. (2007 [triangle]); Udeochu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1543-scheme1.jpg

Experimental

Crystal data

  • C12H7N2O2 +·CF3O3S
  • M r = 360.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1543-efi1.jpg
  • a = 6.4896 (2) Å
  • b = 16.3963 (5) Å
  • c = 13.2430 (3) Å
  • β = 94.393 (2)°
  • V = 1404.99 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 200 (2) K
  • 0.51 × 0.22 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer
  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007 [triangle]) T min = 0.897, T max = 1.000 (expected range = 0.850–0.948)
  • 13319 measured reflections
  • 7960 independent reflections
  • 5208 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.076
  • S = 0.94
  • 7960 reflections
  • 434 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 2713 Friedel pairs
  • Flack parameter: 0.40 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016632/ng2417sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016632/ng2417Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties (Ma et al., 2002; Calderazzo et al., 1999, 2002; Calucci et al., 2006; Galet et al., 2005; Lei et al., 1996; Okamura et al., 2006). This well known ligand posssesses both the α-diimine and orthoquinone moieties. While phendione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Calderazzo et al., 1999; Fox et al., 1991; Shavaleev et al., 2003a,b; Ruiz et al., 1999; Paw & Eisenberg, 1997). In this paper as part of our study of phendione chemistry (Udeochu et al., 2007; Onuegbu et al., 2007) we report the synthesis and characterization of the trifluoromethanesulfonate salt of mono-protonated 1,10-phenanthroline-5,6-dione.

The structure consists of a mono-protonated phendione cation and a trifluoromethanesulfonate (CF3SO3-) anion. The C═O bond lengths in the phendione cation (1.208 (2), 1.209 (2) and the metrical parameters involving the phendione N atoms are comparable in value to those found in neutral 1,10-phenanthroline-5,6-dione.

The N—H protons participate in hydrogen bonds with adjoining phendione cations. In addition there is an extensive network of weak C—H···O interactions to both phendione O and trifluoromethanesulfonate O atoms.

Experimental

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 ml) was added in small portions, followed by drop wise addition of concentrated nitric acid (10 ml). The resulting solution was heated for 2 h at 80–85° C and cooled to room temperature. The solution was then poured into 400 ml water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol–water mixture.

The title compound was synthesized in an atmosphere saturated with N2. To a solution of silver trifluoromethanesulfonate (0.079 g) in 10 ml CH3CN (acidified to pH 2 using concentrated triflic acid), was added a solution (10 ml) of CH3CN containing 0.065 g of phendione (acidified to pH 2 using triflic acid). The final yellowish solution was filtered and allowed to slowly evaporate yield reddish brown crystals of the title compound.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms attached to N in the phendione cation were idealized with an N—H distance of 0.88 Å.

Figures

Fig. 1.
View of the two formula units in the asymmetric unit showing the atom-labeling scheme. Dotted lines indicate the hydrogen bonding interactions. Displacement ellipsoids are drawn at the 20% probability level.
Fig. 2.
The molecular packing of (I) viewed approximately along the b axis. Dotted lines indicate the hydrogen bonding interactions.

Crystal data

C12H7N2O2+·CF3O3SF000 = 728
Mr = 360.27Dx = 1.703 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
a = 6.4896 (2) ÅCell parameters from 5857 reflections
b = 16.3963 (5) Åθ = 4.7–32.5º
c = 13.2430 (3) ŵ = 0.30 mm1
β = 94.393 (2)ºT = 200 (2) K
V = 1404.99 (7) Å3Needle, yellow-orange
Z = 40.51 × 0.22 × 0.18 mm

Data collection

Oxford Diffraction Gemini diffractometer7960 independent reflections
Radiation source: fine-focus sealed tube5208 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 32.5º
T = 200(2) Kθmin = 4.7º
[var phi] and ω scansh = −9→7
Absorption correction: multi-scan[Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2007)]k = −24→21
Tmin = 0.897, Tmax = 1.000l = −19→19
13319 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.94Δρmax = 0.24 e Å3
7960 reflectionsΔρmin = −0.38 e Å3
434 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), with 2713 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.40 (5)
Secondary atom site location: difference Fourier map

Special details

Experimental. The data were measured to a 2θ limit of 50 °, but the low completeness was caused by
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.64118 (7)0.25922 (3)0.84492 (4)0.02642 (11)
S20.86022 (7)0.38484 (3)0.23321 (3)0.02618 (11)
F110.7237 (3)0.10424 (9)0.86156 (13)0.0732 (5)
F120.9730 (2)0.17770 (11)0.81474 (14)0.0735 (5)
F130.7153 (2)0.14825 (10)0.70995 (11)0.0604 (4)
F210.7945 (2)0.49049 (10)0.37563 (11)0.0648 (4)
F220.7727 (3)0.54033 (10)0.22511 (15)0.0759 (5)
F230.5298 (2)0.46511 (10)0.27365 (13)0.0636 (4)
O110.7135 (2)0.26580 (11)0.94979 (10)0.0419 (4)
O120.7202 (2)0.32177 (10)0.78073 (11)0.0340 (3)
O130.4246 (2)0.24330 (10)0.82584 (11)0.0376 (4)
O211.0772 (2)0.40075 (10)0.25085 (11)0.0390 (4)
O220.7848 (2)0.32033 (9)0.29570 (11)0.0346 (4)
O230.7822 (2)0.38146 (11)0.12885 (10)0.0422 (4)
O1A−0.2484 (2)0.12049 (10)0.20079 (13)0.0400 (4)
O2A−0.2548 (2)0.12362 (10)0.40583 (13)0.0457 (4)
O1B1.7556 (2)0.51876 (9)0.87690 (12)0.0386 (4)
O2B1.7531 (2)0.52437 (10)0.67146 (12)0.0431 (4)
N1A0.4031 (2)0.24850 (11)0.22669 (12)0.0254 (4)
H1AB0.50450.26920.26660.030*
N2A0.4147 (3)0.24527 (12)0.42945 (13)0.0319 (4)
N1B1.1004 (2)0.39478 (11)0.85110 (12)0.0258 (4)
H1BB1.00120.37230.81150.031*
N2B1.0923 (3)0.39406 (12)0.64828 (13)0.0327 (4)
C10.7697 (4)0.16729 (15)0.80584 (17)0.0387 (6)
C20.7337 (4)0.47486 (15)0.27958 (18)0.0402 (6)
C1A0.4191 (3)0.25021 (14)0.12634 (15)0.0314 (5)
H1AA0.53840.27290.09990.038*
C2A0.2629 (3)0.21907 (14)0.06179 (17)0.0322 (5)
H2AA0.27370.2197−0.00930.039*
C3A0.0900 (3)0.18683 (13)0.10145 (17)0.0301 (5)
H3AA−0.02020.16580.05770.036*
C4A0.0781 (3)0.18525 (12)0.20630 (15)0.0241 (4)
C5A−0.1030 (3)0.14900 (13)0.25125 (17)0.0289 (5)
C6A−0.1038 (3)0.14924 (13)0.36802 (17)0.0315 (5)
C7A0.0806 (3)0.18109 (13)0.42748 (16)0.0288 (5)
C8A0.0996 (4)0.17678 (15)0.53295 (16)0.0389 (5)
H8AA−0.00780.15350.56840.047*
C9A0.2741 (4)0.20637 (15)0.58490 (18)0.0444 (6)
H9AA0.29010.20380.65670.053*
C10A0.4267 (4)0.23999 (16)0.53074 (17)0.0432 (6)
H10B0.54720.26060.56740.052*
C11A0.2440 (3)0.21495 (12)0.37991 (15)0.0246 (4)
C12A0.2397 (3)0.21671 (12)0.26908 (15)0.0216 (4)
C1B1.0812 (3)0.39649 (13)0.95094 (14)0.0286 (4)
H1BA0.96130.37420.97740.034*
C2B1.2347 (3)0.43041 (13)1.01586 (15)0.0318 (5)
H2BA1.22030.43291.08660.038*
C3B1.4085 (3)0.46050 (13)0.97591 (15)0.0305 (5)
H3BA1.51800.48241.01940.037*
C4B1.4242 (3)0.45896 (12)0.87118 (15)0.0245 (4)
C5B1.6077 (3)0.49192 (13)0.82586 (16)0.0284 (5)
C6B1.6070 (3)0.49306 (13)0.70872 (16)0.0303 (5)
C7B1.4283 (3)0.45768 (13)0.65019 (15)0.0289 (5)
C8B1.4144 (4)0.45842 (15)0.54424 (17)0.0393 (6)
H8BA1.52390.47970.50850.047*
C9B1.2398 (4)0.42780 (16)0.49305 (17)0.0463 (7)
H9BA1.22550.42830.42110.056*
C10B1.0845 (4)0.39614 (16)0.54748 (17)0.0400 (6)
H10A0.96520.37460.51080.048*
C11B1.2622 (3)0.42491 (13)0.69772 (16)0.0271 (5)
C12B1.2647 (3)0.42594 (12)0.80881 (15)0.0240 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0252 (2)0.0305 (3)0.0237 (2)−0.0019 (2)0.00264 (19)−0.0019 (2)
S20.0248 (2)0.0314 (3)0.0226 (2)−0.0042 (2)0.00331 (18)−0.0024 (2)
F110.1143 (14)0.0318 (9)0.0735 (11)0.0060 (8)0.0075 (10)0.0159 (8)
F120.0368 (8)0.0750 (12)0.1081 (14)0.0217 (7)0.0024 (9)−0.0140 (11)
F130.0798 (11)0.0579 (11)0.0435 (8)0.0118 (8)0.0049 (8)−0.0213 (8)
F210.0776 (10)0.0674 (11)0.0500 (9)0.0049 (8)0.0100 (8)−0.0305 (8)
F220.0961 (13)0.0334 (9)0.1013 (14)0.0024 (8)0.0285 (10)0.0186 (9)
F230.0363 (8)0.0633 (11)0.0922 (12)0.0136 (7)0.0116 (8)0.0001 (9)
O110.0484 (9)0.0540 (10)0.0229 (7)−0.0107 (8)−0.0002 (6)−0.0049 (8)
O120.0317 (8)0.0321 (8)0.0381 (9)−0.0046 (6)0.0024 (6)0.0069 (7)
O130.0217 (7)0.0516 (11)0.0399 (8)−0.0076 (6)0.0049 (6)−0.0031 (7)
O210.0282 (8)0.0530 (11)0.0364 (8)−0.0054 (7)0.0052 (6)−0.0039 (8)
O220.0327 (8)0.0309 (8)0.0404 (9)−0.0049 (6)0.0029 (7)0.0057 (7)
O230.0457 (9)0.0574 (11)0.0230 (7)−0.0121 (8)0.0003 (6)−0.0062 (8)
O1A0.0307 (9)0.0350 (9)0.0533 (10)−0.0088 (7)−0.0043 (8)−0.0005 (8)
O2A0.0434 (9)0.0411 (10)0.0555 (10)−0.0126 (7)0.0222 (8)−0.0002 (8)
O1B0.0320 (8)0.0346 (9)0.0485 (9)−0.0093 (7)−0.0009 (7)0.0006 (8)
O2B0.0392 (9)0.0411 (10)0.0517 (10)−0.0075 (7)0.0203 (8)0.0029 (8)
N1A0.0210 (8)0.0285 (10)0.0262 (9)−0.0027 (7)−0.0010 (7)−0.0005 (8)
N2A0.0312 (9)0.0345 (11)0.0293 (9)0.0017 (8)−0.0032 (7)−0.0019 (8)
N1B0.0229 (8)0.0292 (10)0.0253 (8)−0.0002 (7)0.0029 (7)0.0010 (8)
N2B0.0330 (9)0.0372 (11)0.0271 (9)0.0027 (8)−0.0025 (7)−0.0025 (9)
C10.0394 (13)0.0381 (15)0.0387 (13)0.0038 (10)0.0031 (10)−0.0039 (11)
C20.0443 (14)0.0356 (14)0.0419 (14)0.0010 (10)0.0107 (11)0.0003 (11)
C1A0.0306 (11)0.0344 (13)0.0300 (11)−0.0026 (9)0.0079 (9)0.0066 (11)
C2A0.0375 (13)0.0355 (13)0.0238 (11)0.0049 (9)0.0041 (9)0.0040 (10)
C3A0.0310 (11)0.0265 (12)0.0319 (12)0.0017 (8)−0.0045 (10)0.0019 (9)
C4A0.0271 (11)0.0184 (10)0.0266 (10)0.0017 (8)0.0019 (9)0.0005 (8)
C5A0.0258 (11)0.0200 (11)0.0417 (13)0.0024 (8)0.0073 (9)0.0004 (10)
C6A0.0356 (12)0.0199 (11)0.0403 (12)0.0027 (9)0.0101 (9)−0.0012 (9)
C7A0.0334 (11)0.0234 (11)0.0302 (11)0.0021 (8)0.0058 (9)−0.0007 (9)
C8A0.0489 (14)0.0395 (13)0.0301 (12)0.0058 (11)0.0155 (10)0.0058 (10)
C9A0.0619 (17)0.0460 (16)0.0253 (11)0.0075 (12)0.0035 (11)0.0035 (11)
C10A0.0506 (14)0.0438 (16)0.0331 (12)0.0044 (11)−0.0100 (11)−0.0022 (11)
C11A0.0258 (10)0.0240 (11)0.0240 (10)0.0009 (8)0.0027 (8)−0.0020 (9)
C12A0.0198 (10)0.0210 (11)0.0247 (10)0.0019 (7)0.0063 (8)0.0006 (9)
C1B0.0270 (10)0.0299 (12)0.0297 (10)0.0019 (8)0.0070 (8)0.0036 (10)
C2B0.0400 (12)0.0339 (12)0.0215 (10)−0.0014 (9)0.0024 (9)0.0033 (9)
C3B0.0341 (11)0.0292 (12)0.0271 (11)−0.0014 (8)−0.0056 (9)−0.0014 (9)
C4B0.0253 (10)0.0209 (10)0.0272 (11)0.0042 (8)0.0009 (9)0.0025 (9)
C5B0.0277 (11)0.0211 (11)0.0361 (11)0.0032 (8)0.0011 (9)0.0037 (9)
C6B0.0322 (12)0.0242 (12)0.0357 (12)0.0060 (9)0.0106 (9)0.0037 (10)
C7B0.0350 (12)0.0272 (11)0.0253 (10)0.0061 (8)0.0078 (9)0.0045 (9)
C8B0.0535 (15)0.0378 (13)0.0282 (12)0.0080 (11)0.0137 (11)0.0028 (11)
C9B0.0656 (18)0.0520 (16)0.0208 (11)0.0117 (13)0.0006 (12)−0.0013 (11)
C10B0.0466 (13)0.0407 (15)0.0312 (12)0.0047 (11)−0.0072 (10)−0.0047 (11)
C11B0.0315 (11)0.0258 (11)0.0243 (10)0.0066 (9)0.0033 (9)0.0019 (9)
C12B0.0241 (10)0.0209 (11)0.0270 (10)0.0053 (8)0.0008 (8)0.0033 (9)

Geometric parameters (Å, °)

S1—O131.4330 (14)C3A—C4A1.397 (3)
S1—O111.4355 (15)C3A—H3AA0.9500
S1—O121.4507 (16)C4A—C12A1.387 (3)
S1—C11.817 (2)C4A—C5A1.482 (3)
S2—O211.4337 (14)C5A—C6A1.547 (3)
S2—O231.4362 (14)C6A—C7A1.477 (3)
S2—O221.4509 (16)C7A—C11A1.390 (3)
S2—C21.819 (2)C7A—C8A1.394 (3)
F11—C11.318 (3)C8A—C9A1.369 (3)
F12—C11.327 (3)C8A—H8AA0.9500
F13—C11.329 (3)C9A—C10A1.381 (4)
F21—C21.328 (3)C9A—H9AA0.9500
F22—C21.328 (3)C10A—H10B0.9500
F23—C21.329 (3)C11A—C12A1.466 (3)
O1A—C5A1.208 (2)C1B—C2B1.382 (3)
O2A—C6A1.209 (2)C1B—H1BA0.9500
O1B—C5B1.214 (2)C2B—C3B1.374 (3)
O2B—C6B1.216 (2)C2B—H2BA0.9500
N1A—C1A1.341 (3)C3B—C4B1.399 (3)
N1A—C12A1.343 (2)C3B—H3BA0.9500
N1A—H1AB0.8800C4B—C12B1.384 (3)
N2A—C11A1.339 (2)C4B—C5B1.476 (3)
N2A—C10A1.340 (3)C5B—C6B1.551 (3)
N1B—C1B1.338 (2)C6B—C7B1.464 (3)
N1B—C12B1.343 (3)C7B—C11B1.396 (3)
N1B—H1BB0.8800C7B—C8B1.399 (3)
N2B—C10B1.332 (3)C8B—C9B1.371 (3)
N2B—C11B1.338 (3)C8B—H8BA0.9500
C1A—C2A1.373 (3)C9B—C10B1.384 (3)
C1A—H1AA0.9500C9B—H9BA0.9500
C2A—C3A1.380 (3)C10B—H10A0.9500
C2A—H2AA0.9500C11B—C12B1.470 (3)
O13—S1—O11115.34 (9)C8A—C7A—C6A121.5 (2)
O13—S1—O12114.30 (9)C9A—C8A—C7A119.5 (2)
O11—S1—O12114.19 (9)C9A—C8A—H8AA120.3
O13—S1—C1105.30 (10)C7A—C8A—H8AA120.3
O11—S1—C1102.40 (10)C8A—C9A—C10A118.6 (2)
O12—S1—C1103.23 (10)C8A—C9A—H9AA120.7
O21—S2—O23115.69 (9)C10A—C9A—H9AA120.7
O21—S2—O22114.19 (9)N2A—C10A—C9A123.8 (2)
O23—S2—O22114.28 (9)N2A—C10A—H10B118.1
O21—S2—C2105.11 (11)C9A—C10A—H10B118.1
O23—S2—C2102.77 (11)N2A—C11A—C7A123.88 (19)
O22—S2—C2102.61 (10)N2A—C11A—C12A115.77 (18)
C1A—N1A—C12A123.07 (17)C7A—C11A—C12A120.33 (17)
C1A—N1A—H1AB118.5N1A—C12A—C4A118.63 (17)
C12A—N1A—H1AB118.5N1A—C12A—C11A118.10 (16)
C11A—N2A—C10A116.7 (2)C4A—C12A—C11A123.25 (17)
C1B—N1B—C12B122.78 (17)N1B—C1B—C2B120.40 (18)
C1B—N1B—H1BB118.6N1B—C1B—H1BA119.8
C12B—N1B—H1BB118.6C2B—C1B—H1BA119.8
C10B—N2B—C11B116.6 (2)C3B—C2B—C1B118.62 (19)
F11—C1—F12108.5 (2)C3B—C2B—H2BA120.7
F11—C1—F13107.22 (19)C1B—C2B—H2BA120.7
F12—C1—F13107.7 (2)C2B—C3B—C4B119.98 (19)
F11—C1—S1111.27 (16)C2B—C3B—H3BA120.0
F12—C1—S1110.05 (16)C4B—C3B—H3BA120.0
F13—C1—S1111.92 (16)C12B—C4B—C3B119.40 (19)
F21—C2—F22108.0 (2)C12B—C4B—C5B119.35 (18)
F21—C2—F23107.5 (2)C3B—C4B—C5B121.25 (18)
F22—C2—F23107.18 (19)O1B—C5B—C4B122.31 (19)
F21—C2—S2111.81 (17)O1B—C5B—C6B119.62 (18)
F22—C2—S2111.26 (16)C4B—C5B—C6B118.06 (17)
F23—C2—S2110.84 (16)O2B—C6B—C7B124.3 (2)
N1A—C1A—C2A119.98 (19)O2B—C6B—C5B117.92 (19)
N1A—C1A—H1AA120.0C7B—C6B—C5B117.79 (18)
C2A—C1A—H1AA120.0C11B—C7B—C8B117.6 (2)
C1A—C2A—C3A119.2 (2)C11B—C7B—C6B121.40 (19)
C1A—C2A—H2AA120.4C8B—C7B—C6B121.0 (2)
C3A—C2A—H2AA120.4C9B—C8B—C7B118.7 (2)
C2A—C3A—C4A119.6 (2)C9B—C8B—H8BA120.7
C2A—C3A—H3AA120.2C7B—C8B—H8BA120.7
C4A—C3A—H3AA120.2C8B—C9B—C10B119.2 (2)
C12A—C4A—C3A119.47 (18)C8B—C9B—H9BA120.4
C12A—C4A—C5A119.66 (18)C10B—C9B—H9BA120.4
C3A—C4A—C5A120.85 (19)N2B—C10B—C9B123.9 (2)
O1A—C5A—C4A122.9 (2)N2B—C10B—H10A118.0
O1A—C5A—C6A119.47 (19)C9B—C10B—H10A118.0
C4A—C5A—C6A117.65 (18)N2B—C11B—C7B124.1 (2)
O2A—C6A—C7A123.4 (2)N2B—C11B—C12B116.08 (19)
O2A—C6A—C5A118.55 (19)C7B—C11B—C12B119.79 (18)
C7A—C6A—C5A118.00 (18)N1B—C12B—C4B118.77 (18)
C11A—C7A—C8A117.5 (2)N1B—C12B—C11B117.69 (17)
C11A—C7A—C6A120.98 (19)C4B—C12B—C11B123.52 (18)
O13—S1—C1—F11−63.50 (18)C1A—N1A—C12A—C11A177.25 (18)
O11—S1—C1—F1157.46 (18)C3A—C4A—C12A—N1A0.5 (3)
O12—S1—C1—F11176.32 (16)C5A—C4A—C12A—N1A179.33 (19)
O13—S1—C1—F12176.18 (16)C3A—C4A—C12A—C11A−177.69 (18)
O11—S1—C1—F12−62.86 (19)C5A—C4A—C12A—C11A1.1 (3)
O12—S1—C1—F1256.00 (19)N2A—C11A—C12A—N1A−0.5 (3)
O13—S1—C1—F1356.44 (19)C7A—C11A—C12A—N1A−178.6 (2)
O11—S1—C1—F13177.40 (16)N2A—C11A—C12A—C4A177.71 (19)
O12—S1—C1—F13−63.74 (19)C7A—C11A—C12A—C4A−0.4 (3)
O21—S2—C2—F21−55.78 (19)C12B—N1B—C1B—C2B−0.7 (3)
O23—S2—C2—F21−177.22 (16)N1B—C1B—C2B—C3B−1.4 (3)
O22—S2—C2—F2163.91 (19)C1B—C2B—C3B—C4B2.2 (3)
O21—S2—C2—F2265.10 (18)C2B—C3B—C4B—C12B−0.9 (3)
O23—S2—C2—F22−56.34 (18)C2B—C3B—C4B—C5B179.1 (2)
O22—S2—C2—F22−175.21 (16)C12B—C4B—C5B—O1B−177.13 (19)
O21—S2—C2—F23−175.74 (16)C3B—C4B—C5B—O1B2.9 (3)
O23—S2—C2—F2362.82 (18)C12B—C4B—C5B—C6B3.9 (3)
O22—S2—C2—F23−56.05 (18)C3B—C4B—C5B—C6B−176.08 (17)
C12A—N1A—C1A—C2A0.5 (3)O1B—C5B—C6B—O2B−3.0 (3)
N1A—C1A—C2A—C3A0.5 (3)C4B—C5B—C6B—O2B176.0 (2)
C1A—C2A—C3A—C4A−1.0 (3)O1B—C5B—C6B—C7B178.08 (19)
C2A—C3A—C4A—C12A0.5 (3)C4B—C5B—C6B—C7B−2.9 (3)
C2A—C3A—C4A—C5A−178.3 (2)O2B—C6B—C7B—C11B−177.9 (2)
C12A—C4A—C5A—O1A−179.9 (2)C5B—C6B—C7B—C11B0.9 (3)
C3A—C4A—C5A—O1A−1.0 (3)O2B—C6B—C7B—C8B−0.5 (3)
C12A—C4A—C5A—C6A0.9 (3)C5B—C6B—C7B—C8B178.34 (19)
C3A—C4A—C5A—C6A179.67 (18)C11B—C7B—C8B—C9B0.5 (3)
O1A—C5A—C6A—O2A−2.9 (3)C6B—C7B—C8B—C9B−177.1 (2)
C4A—C5A—C6A—O2A176.4 (2)C7B—C8B—C9B—C10B−0.9 (4)
O1A—C5A—C6A—C7A177.2 (2)C11B—N2B—C10B—C9B0.0 (4)
C4A—C5A—C6A—C7A−3.5 (3)C8B—C9B—C10B—N2B0.7 (4)
O2A—C6A—C7A—C11A−175.5 (2)C10B—N2B—C11B—C7B−0.6 (3)
C5A—C6A—C7A—C11A4.3 (3)C10B—N2B—C11B—C12B177.13 (18)
O2A—C6A—C7A—C8A5.9 (3)C8B—C7B—C11B—N2B0.3 (3)
C5A—C6A—C7A—C8A−174.27 (19)C6B—C7B—C11B—N2B177.9 (2)
C11A—C7A—C8A—C9A0.7 (3)C8B—C7B—C11B—C12B−177.29 (18)
C6A—C7A—C8A—C9A179.4 (2)C6B—C7B—C11B—C12B0.3 (3)
C7A—C8A—C9A—C10A0.2 (4)C1B—N1B—C12B—C4B2.1 (3)
C11A—N2A—C10A—C9A−0.7 (4)C1B—N1B—C12B—C11B−176.33 (18)
C8A—C9A—C10A—N2A−0.2 (4)C3B—C4B—C12B—N1B−1.3 (3)
C10A—N2A—C11A—C7A1.7 (3)C5B—C4B—C12B—N1B178.77 (18)
C10A—N2A—C11A—C12A−176.33 (18)C3B—C4B—C12B—C11B177.07 (17)
C8A—C7A—C11A—N2A−1.8 (3)C5B—C4B—C12B—C11B−2.9 (3)
C6A—C7A—C11A—N2A179.60 (19)N2B—C11B—C12B—N1B1.3 (3)
C8A—C7A—C11A—C12A176.19 (18)C7B—C11B—C12B—N1B179.1 (2)
C6A—C7A—C11A—C12A−2.4 (3)N2B—C11B—C12B—C4B−177.06 (19)
C1A—N1A—C12A—C4A−1.0 (3)C7B—C11B—C12B—C4B0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1AB···O220.882.012.830 (2)154
N1B—H1BB···O120.882.022.835 (2)154
C1A—H1AA···O11i0.952.373.141 (3)138
C1A—H1AA···O230.952.393.190 (3)141
C1B—H1BA···O110.952.413.206 (3)142
C1B—H1BA···O23ii0.952.403.175 (2)139
C2A—H2AA···O13i0.952.493.395 (3)159
C9A—H9AA···O130.952.433.320 (3)156
C2B—H2BA···O21ii0.952.493.384 (3)158
C9B—H9BA···O210.952.433.328 (3)159

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2417).

References

  • Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). Dalton Trans. pp. 4389–4396.
  • Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.
  • Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911–3920.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem.30, 2895–2899.
  • Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem.631, 1985–1987.
  • Lei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem.35, 3044–3049.
  • Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307–1314.
  • Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106–112.
  • Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK Oxford Diffraction Ltd, Abingdon, England.
  • Paw, W. & Eisenberg, R. (1997). Inorg. Chem.36, 2287–2293. [PubMed]
  • Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun.2, 521–523.
  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134–1135. [PubMed]
  • Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J.9, 5283–5291. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Udeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409–3415. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography