PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1542.
Published online 2008 July 19. doi:  10.1107/S1600536808022198
PMCID: PMC2962166

3-(4-Chloro­phen­yl)-2-methyl­acrylic acid

Abstract

In the crystal structure of the title compound, C10H9ClO2, dimers form as a result of inter­molecular O—H(...)O bonding. These dimers are linked to each other via C—H(...)O bonds, where the CH group belongs to the benzene ring and the O atom is from the carbonyl group of an adjacent mol­ecule. There exist two inter­molecular C—H(...)O hydrogen bonds, which individually form five-membered rings. There also exists a π–π inter­action between the aromatic ring and its symmetry counterpart, with a centroid–centroid distance of 4.0202 (17) Å, and a C—H(...)π inter­action between a methyl CH group and the aromatic ring.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Bravo (1998 [triangle]); Burt (2004 [triangle]); Hertog et al. (1995 [triangle]); Muhammad et al. (2007a [triangle],b [triangle], 2008a [triangle],b [triangle]); Muhammad, Ali et al. (2008 [triangle]); Niaz et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1542-scheme1.jpg

Experimental

Crystal data

  • C10H9ClO2
  • M r = 196.62
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1542-efi1.jpg
  • a = 7.2164 (6) Å
  • b = 8.2746 (7) Å
  • c = 9.1762 (8) Å
  • α = 115.182 (4)°
  • β = 108.022 (4)°
  • γ = 90.052 (5)°
  • V = 465.91 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 296 (2) K
  • 0.28 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.910, T max = 0.930
  • 7513 measured reflections
  • 2692 independent reflections
  • 1782 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.217
  • S = 1.10
  • 2692 reflections
  • 122 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022198/bq2090sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022198/bq2090Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to NM for a PhD under the Indigenous Scholarship Scheme.

supplementary crystallographic information

Comment

Cinnamic acids compose a relatively large family of organic acid isomers (Bravo, 1998). In nature, cinnamic acid derivatives are important metabolic building blocks in the production of lignins for higher plants. Cinnamic acid possesses antibacterial, antifungal and parasite fighting abilities (Burt, 2004). A derivative of cinnamic acid is an important pharmaceutical for high blood pressure, stroke prevention and possess antitumour activity (Hertog et al., 1995). In continuation of our efforts to synthesize various derivatives of cinnamic acids (Niaz et al., 2008, Muhammad, Ali et al., 2008) and their tin complexes (Muhammad et al., 2008a, 2008b), we herein report the structure of the title compound (I).

The crystal structure of 3-(4-Bromophenyl)-2-methylacrylic acid (II) (Muhammad et al., 2007a) and 3-(4-Bromophenyl)-2-ethylacrylic acid (Muhammad et al., 2007b) has been previously reported. The title compound (I) have a replacement of Br-atom with Cl-atom. Thus the reported compound (II) is the best example for the comparison of bond geometry etc.

In the crystal structure of the title compound, the C—C bonds are in the range [1.467 (3)–1.503 (4) Å], and C==C have a value of 1.341 (3) Å. The resonant C—O bonds have values of 1.231 (3) and 1.310 (3) Å. In the asymmetric unit, there are two intermolecular H-bonds of C—H···O type (Table 2, Fig 1). Due to these H-bonds two five membered rings (O1/C1/C2/C4/H4···O1) and (O2/C1/C2/C3/H3A···O2) are formed. Centrosymmetric dimers, R22(8) (Bernstein et al. 1995) are formed due to the intermolecular O1—H1···O2i [symmetry code: i = -x - 1, -y + 1, -z] hydrogen bonding. These dimers are linked to each other by intermolecular H-bonding, C9—H9···O2ii [symmetry code: ii = x + 1, y, z + 1] as shown in Fig 2. There exist an interaction, C3—H3A···Cgiii [symmetry code: iii = -x, -y, -z] with a distance of 3.638 (3) Å between C3 and Cgiii [Cg is the center of the (C5-C10) benzene ring]. There also exist a π···π-interaction between the benzene rings of adjacent molecules. The distance between the centroids of Cg and Cgiv [symmetry code: iv = -x + 1, -y + 1, -z + 1], is 4.0202 (17) Å.

Experimental

Compound (I) was prepared according to the reported procedure (Muhammad et al., 2007a). A mixture of 4-chlorobenzaldehyde (1.40 g, 10 mmol), methylmalonic acid (2.36 g, 20 mmol) and piperidine (1.98 ml, 20 mmol) in a pyridine (12.5 ml) solution was heated on a steam-bath for 24 h. The reaction mixture was cooled and added to a mixture of 25 ml of concentrated HCl and 50 g of ice. The precipitate formed in the acidified mixture was filtered off and washed with ice-cold water. The product was recrystallized from ethanol. The yield was 89%.

Refinement

The coordinates of H atom attached to O1 were refined freely. All other H atoms were positioned geometrically, C—H = 0.93, and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms and were treated as isotropic with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP drawing of (I) with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The intramolecular H-bonds are shown by doted lines.
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the dimeric nature of the compound and the interlinkages of the dimers.

Crystal data

C10H9ClO2Z = 2
Mr = 196.62F000 = 204
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.2164 (6) ÅCell parameters from 2692 reflections
b = 8.2746 (7) Åθ = 2.6–30.3º
c = 9.1762 (8) ŵ = 0.37 mm1
α = 115.182 (4)ºT = 296 (2) K
β = 108.022 (4)ºPrism, colourless
γ = 90.052 (5)º0.28 × 0.20 × 0.18 mm
V = 465.91 (7) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2692 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
Detector resolution: 7.2 pixels mm-1θmax = 30.3º
T = 296(2) Kθmin = 2.6º
ω scansh = −10→8
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −10→11
Tmin = 0.910, Tmax = 0.930l = −12→12
7513 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.217  w = 1/[σ2(Fo2) + (0.1083P)2 + 0.1931P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2692 reflectionsΔρmax = 0.53 e Å3
122 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction coefficient: ?

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.80795 (12)0.09608 (15)0.42599 (12)0.0771 (4)
O1−0.2602 (3)0.5461 (3)0.1669 (2)0.0510 (6)
O2−0.3959 (3)0.3388 (3)−0.1034 (2)0.0543 (6)
C1−0.2554 (3)0.4027 (3)0.0322 (3)0.0390 (7)
C2−0.0735 (3)0.3196 (3)0.0525 (3)0.0371 (7)
C3−0.0680 (4)0.1670 (4)−0.1102 (3)0.0484 (8)
C40.0606 (3)0.3764 (3)0.2098 (3)0.0403 (7)
C50.2464 (3)0.3096 (3)0.2602 (3)0.0364 (6)
C60.3638 (4)0.2508 (4)0.1573 (3)0.0432 (8)
C70.5363 (4)0.1864 (4)0.2086 (3)0.0461 (8)
C80.5923 (4)0.1793 (4)0.3641 (3)0.0438 (7)
C90.4803 (4)0.2379 (4)0.4686 (3)0.0493 (8)
C100.3099 (4)0.3051 (4)0.4171 (3)0.0451 (7)
H1−0.377 (5)0.580 (5)0.142 (5)0.0612*
H3A−0.198610.10124−0.179140.0725*
H3B0.017470.08750−0.082930.0725*
H3C−0.019500.21487−0.172410.0725*
H40.032290.469970.297970.0484*
H60.325240.255120.052630.0518*
H70.613820.148120.139470.0554*
H90.518730.232330.572690.0592*
H100.236240.348160.489240.0541*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0555 (5)0.1129 (8)0.0698 (6)0.0449 (5)0.0181 (4)0.0492 (5)
O10.0415 (10)0.0576 (12)0.0430 (10)0.0207 (8)0.0116 (8)0.0147 (9)
O20.0436 (10)0.0686 (13)0.0391 (10)0.0217 (9)0.0075 (8)0.0183 (9)
C10.0377 (11)0.0459 (13)0.0373 (12)0.0117 (10)0.0140 (9)0.0213 (10)
C20.0357 (11)0.0379 (12)0.0411 (12)0.0091 (9)0.0141 (9)0.0202 (10)
C30.0444 (13)0.0477 (14)0.0430 (13)0.0116 (11)0.0115 (11)0.0138 (11)
C40.0365 (11)0.0418 (12)0.0395 (12)0.0109 (9)0.0122 (9)0.0160 (10)
C50.0335 (10)0.0351 (11)0.0363 (11)0.0060 (9)0.0105 (9)0.0131 (9)
C60.0397 (12)0.0562 (15)0.0408 (12)0.0112 (10)0.0143 (10)0.0276 (12)
C70.0359 (11)0.0604 (16)0.0443 (13)0.0130 (11)0.0152 (10)0.0245 (12)
C80.0349 (11)0.0487 (14)0.0413 (12)0.0103 (10)0.0060 (10)0.0192 (11)
C90.0461 (13)0.0627 (17)0.0323 (12)0.0133 (12)0.0063 (10)0.0200 (12)
C100.0412 (12)0.0563 (15)0.0310 (11)0.0105 (11)0.0116 (10)0.0141 (11)

Geometric parameters (Å, °)

Cl1—C81.734 (3)C7—C81.385 (4)
O1—C11.310 (3)C8—C91.376 (4)
O2—C11.231 (3)C9—C101.382 (4)
O1—H10.88 (4)C3—H3A0.9600
C1—C21.480 (3)C3—H3B0.9600
C2—C31.503 (4)C3—H3C0.9600
C2—C41.341 (3)C4—H40.9300
C4—C51.467 (3)C6—H60.9300
C5—C101.386 (4)C7—H70.9300
C5—C61.397 (4)C9—H90.9300
C6—C71.381 (4)C10—H100.9300
C1—O1—H1109 (3)C5—C10—C9121.4 (2)
O1—C1—O2121.8 (2)C2—C3—H3A109.00
O1—C1—C2116.5 (2)C2—C3—H3B109.00
O2—C1—C2121.7 (2)C2—C3—H3C109.00
C1—C2—C4118.9 (2)H3A—C3—H3B109.00
C3—C2—C4126.8 (2)H3A—C3—H3C109.00
C1—C2—C3114.2 (2)H3B—C3—H3C110.00
C2—C4—C5128.1 (2)C2—C4—H4116.00
C4—C5—C10118.9 (2)C5—C4—H4116.00
C6—C5—C10118.1 (2)C5—C6—H6119.00
C4—C5—C6122.9 (2)C7—C6—H6119.00
C5—C6—C7121.0 (2)C6—C7—H7120.00
C6—C7—C8119.2 (3)C8—C7—H7120.00
Cl1—C8—C7118.7 (2)C8—C9—H9120.00
Cl1—C8—C9120.3 (2)C10—C9—H9120.00
C7—C8—C9120.9 (3)C5—C10—H10119.00
C8—C9—C10119.2 (3)C9—C10—H10119.00
O1—C1—C2—C3−174.4 (2)C10—C5—C6—C71.3 (5)
O1—C1—C2—C49.9 (4)C4—C5—C10—C9177.8 (3)
O2—C1—C2—C36.7 (4)C6—C5—C10—C9−2.5 (5)
O2—C1—C2—C4−169.1 (3)C5—C6—C7—C80.4 (5)
C1—C2—C4—C5177.8 (3)C6—C7—C8—Cl1179.4 (3)
C3—C2—C4—C52.6 (5)C6—C7—C8—C9−1.0 (5)
C2—C4—C5—C635.4 (4)Cl1—C8—C9—C10179.5 (3)
C2—C4—C5—C10−145.0 (3)C7—C8—C9—C10−0.2 (5)
C4—C5—C6—C7−179.0 (3)C8—C9—C10—C52.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (4)1.76 (4)2.643 (3)176.4 (14)
C3—H3A···O20.962.412.765 (4)101
C4—H4···O10.932.322.720 (3)106
C9—H9···O2ii0.932.573.458 (3)159
C3—H3a···Cgiii0.962.843.638 (3)141

Symmetry codes: (i) −x−1, −y+1, −z; (ii) x+1, y, z+1; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2090).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bravo, L. (1998). Nutr. Rev.56, 317–333. [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Burt, S. (2004). Int. J. Food Microbiol.94, 223–253. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A. & Nedeljkovic, S. (1995). Arch. Intern. Med.155, 381–386. [PubMed]
  • Muhammad, N., Ali, S., Tahir, M. N. & Zia-ur-Rehman, (2008). Acta Cryst. E64, o1373. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman, (2008a). Acta Cryst. E64, m946–m947. [PMC free article] [PubMed]
  • Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman, (2008b). Acta Cryst. E64, m978. [PMC free article] [PubMed]
  • Muhammad, N., Zia-ur-Rehman,, Ali, S. & Meetsma, A. (2007a). Acta Cryst. E63, o2174–o2175.
  • Muhammad, N., Zia-ur-Rehman,, Ali, S. & Meetsma, A. (2007b). Acta Cryst. E63, o2557–o2558.
  • Niaz, M., Tahir, M. N., Zia-ur-Rehman,, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, o733. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography