PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1539.
Published online 2008 July 19. doi:  10.1107/S1600536808021673
PMCID: PMC2962164

N-[2-(4-Chloro­phen­yl)propano­yl]-1-methyl­bornane-10,2-sultam

Abstract

In the mol­ecular structure of the title compound, C20H26ClNO3S, the six-membered ring of the bornane unit shows a boat conformation, while the five-membered ring of the sultam unit adopts a twist conformation. In the crystal structure, mol­ecules are connected by inter­molecular C—H(...)O hydrogen bonds into a chain running along the b axis. Intramolecular C—H(...)O and C—H(...)N hydrogen bonds are also present.

Related literature

For related literature, see: Lu et al. (2008 [triangle]); Oppolzer (1989 [triangle], 1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1539-scheme1.jpg

Experimental

Crystal data

  • C20H26ClNO3S
  • M r = 395.93
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1539-efi1.jpg
  • a = 24.6517 (10) Å
  • b = 7.6430 (3) Å
  • c = 22.1608 (9) Å
  • β = 109.477 (1)°
  • V = 3936.4 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 294 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 13035 measured reflections
  • 4301 independent reflections
  • 3266 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.140
  • S = 1.01
  • 4301 reflections
  • 239 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021673/pv2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021673/pv2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 20572029 and 20772039) and the Science Foundation of the Ministry of Education for New Teachers at the Universities of China (No. 20070511006).

supplementary crystallographic information

Comment

Pioneering work of Oppolzer (1990) has resulted in the development of bornane[10,2]sultams which serve as popular and widely used chiral auxiliaries in asymmetric synthesis. The resulting asymmetric induction using these auxiliaries are high in carbon-carbon bond formation such as alkylation (Oppolzer, 1989), and we have focused our attention on this field (Lu et al., 2008). In this paper, we present X-ray crystallographic analysis of the title compound, (I).

The structure of title compound (I) is different from that of the reported compound (Lu et al., 2008) wherein a proton is substituted by methyl on C10. In (I), the six-member ring of sultam shows a boat conformation (Fig. 1). The planes constructed by C1/C2/C3/C4 and C1/C6/C5/C4 form a dihedral angle of 110.7 (1)°. The C7/C8/C9 plane makes dihedral angles of 90.3 (1)° and 86.5 (2)°, respectively, with C1/C2/C3/C4 and C1/C6/C5/C4 planes. Molecules are linked by intermolecular C—H···O type hydrogen bonds into a one-dimensional chain; intramolecular interactions of the types C—H···O and C—H···N are also present (details are given in Table 1).

Experimental

n-BuLi (4.8 ml, 12.0 mmol) in hexane (25.0 ml) was added over 30 min to a THF (25.0 ml) solution of (+)-N-[2-(4-chlorophenyl)-ethanoyl]bornane-10,2-sultam (1.84 g, 5.0 mmol) at 193 K. After stirring the mixture at 193 K for 1 h, iodomethane (3.2 ml, 51.4 mmol) in hexamethylphosphorous triamide (4.5 ml, 24.6 mmol) was added and then stirred at 193 K for 3 h. The solution was slowly warmed up to room temperature, quenched with water and extraxted by Et2O to afford a crude product. Single crystals appropriate for data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Refinement

All H atoms were constrained to an ideal geometry with C—H = 0.93, 0.96, 0.97 and 0.98 Å for the aromatic, CH3, CH2 and CH type H-atoms, respectively, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(the rest C).

Figures

Fig. 1.
A perspective drawing of the structure of the title compound with displacement ellipsoids plotted at 50% probability level.

Crystal data

C20H26ClNO3SF000 = 1680
Mr = 395.93Dx = 1.336 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3899 reflections
a = 24.6517 (10) Åθ = 2.9–26.1º
b = 7.6430 (3) ŵ = 0.32 mm1
c = 22.1608 (9) ÅT = 294 (2) K
β = 109.4770 (10)ºBlock, colorless
V = 3936.4 (3) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3266 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Monochromator: graphiteθmax = 27.0º
T = 294(2) Kθmin = 1.8º
[var phi] and ω scansh = −31→30
Absorption correction: nonek = −9→6
13035 measured reflectionsl = −28→28
4301 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.082P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4301 reflectionsΔρmax = 0.45 e Å3
239 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.11339 (8)0.3105 (3)−0.06399 (9)0.0407 (5)
C20.11867 (10)0.3198 (3)−0.13128 (10)0.0594 (6)
H2A0.11370.4387−0.14740.071*
H2B0.15580.2766−0.13080.071*
C30.06989 (11)0.2015 (4)−0.17175 (11)0.0759 (8)
H3A0.08490.1021−0.18840.091*
H3B0.04340.2656−0.20720.091*
C40.04034 (10)0.1423 (4)−0.12372 (11)0.0619 (6)
H40.00070.1016−0.14370.074*
C50.08001 (9)0.0101 (3)−0.07791 (11)0.0560 (6)
H5A0.0912−0.0828−0.10120.067*
H5B0.0617−0.0407−0.04950.067*
C60.13243 (8)0.1241 (3)−0.04048 (8)0.0390 (4)
H60.16600.0908−0.05210.047*
C70.04633 (9)0.3049 (3)−0.08060 (11)0.0538 (6)
C80.01610 (12)0.4693 (4)−0.11566 (14)0.0815 (9)
H8A−0.02480.4522−0.12970.122*
H8B0.02800.4909−0.15200.122*
H8C0.02610.5677−0.08720.122*
C90.02409 (9)0.2754 (3)−0.02455 (12)0.0634 (6)
H9A−0.01710.2656−0.04050.095*
H9B0.03510.37230.00450.095*
H9C0.04040.1696−0.00260.095*
C100.14806 (8)0.4422 (2)−0.01475 (9)0.0419 (5)
H100.12290.5401−0.01310.050*
C110.20150 (10)0.5146 (3)−0.02619 (12)0.0589 (6)
H11A0.22410.4196−0.03330.088*
H11B0.22390.58030.01060.088*
H11C0.19010.5896−0.06310.088*
C120.16253 (9)−0.0273 (3)0.06472 (10)0.0444 (5)
C130.17899 (9)−0.0208 (3)0.13723 (9)0.0451 (5)
H130.17680.10060.15040.054*
C140.13447 (11)−0.1306 (4)0.15525 (13)0.0689 (7)
H14A0.1346−0.24820.14000.103*
H14B0.0969−0.08050.13610.103*
H14C0.1441−0.13180.20090.103*
C150.23966 (9)−0.0879 (3)0.16938 (9)0.0419 (5)
C160.28060 (10)0.0159 (3)0.21258 (10)0.0507 (5)
H160.27050.12790.22130.061*
C170.33565 (10)−0.0420 (3)0.24289 (10)0.0558 (6)
H170.36230.02910.27230.067*
C180.35098 (9)−0.2068 (3)0.22924 (10)0.0530 (6)
C190.31159 (10)−0.3138 (3)0.18749 (11)0.0551 (6)
H190.3222−0.42530.17880.066*
C200.25609 (10)−0.2553 (3)0.15831 (10)0.0507 (5)
H200.2292−0.32940.13070.061*
Cl10.42204 (3)−0.27529 (11)0.26487 (4)0.0863 (3)
N10.14780 (7)0.1266 (2)0.03007 (7)0.0372 (4)
O10.13477 (7)0.3813 (2)0.09856 (7)0.0581 (4)
O20.23002 (7)0.32702 (19)0.09180 (8)0.0600 (4)
O30.15939 (8)−0.1640 (2)0.03573 (8)0.0674 (5)
S10.16878 (2)0.32760 (6)0.06102 (2)0.03981 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0384 (10)0.0434 (12)0.0414 (10)0.0058 (8)0.0147 (8)0.0016 (8)
C20.0620 (15)0.0737 (17)0.0449 (12)0.0133 (12)0.0208 (11)0.0074 (11)
C30.0673 (16)0.110 (2)0.0410 (12)0.0176 (16)0.0052 (12)−0.0073 (13)
C40.0411 (12)0.0788 (17)0.0534 (13)0.0024 (11)−0.0008 (10)−0.0144 (12)
C50.0514 (13)0.0531 (14)0.0563 (13)−0.0049 (11)0.0084 (10)−0.0202 (11)
C60.0379 (10)0.0397 (11)0.0366 (9)0.0034 (8)0.0089 (8)−0.0066 (8)
C70.0405 (12)0.0618 (15)0.0549 (12)0.0107 (10)0.0102 (10)−0.0027 (11)
C80.0630 (16)0.094 (2)0.0807 (18)0.0351 (15)0.0143 (14)0.0139 (16)
C90.0410 (12)0.0797 (18)0.0727 (15)0.0037 (12)0.0232 (11)−0.0082 (13)
C100.0465 (11)0.0315 (10)0.0502 (11)0.0040 (8)0.0194 (9)0.0046 (8)
C110.0618 (14)0.0520 (14)0.0708 (15)−0.0099 (11)0.0324 (12)0.0014 (11)
C120.0507 (12)0.0298 (10)0.0495 (11)−0.0010 (9)0.0123 (9)−0.0026 (9)
C130.0590 (13)0.0325 (11)0.0457 (11)0.0000 (9)0.0202 (10)0.0020 (8)
C140.0620 (15)0.0672 (17)0.0843 (18)−0.0009 (13)0.0336 (14)0.0167 (14)
C150.0557 (12)0.0372 (11)0.0364 (9)−0.0032 (9)0.0202 (9)0.0022 (8)
C160.0706 (15)0.0392 (12)0.0425 (11)−0.0026 (11)0.0191 (10)−0.0092 (9)
C170.0621 (14)0.0539 (14)0.0457 (11)−0.0073 (11)0.0104 (11)−0.0124 (10)
C180.0559 (14)0.0536 (14)0.0480 (11)0.0002 (11)0.0154 (10)−0.0012 (10)
C190.0603 (14)0.0398 (13)0.0595 (13)0.0064 (10)0.0123 (11)−0.0052 (10)
C200.0582 (13)0.0369 (12)0.0520 (12)−0.0068 (10)0.0117 (10)−0.0091 (10)
Cl10.0590 (4)0.0855 (6)0.0958 (5)0.0071 (4)0.0011 (4)−0.0167 (4)
N10.0455 (9)0.0267 (8)0.0378 (8)−0.0014 (7)0.0117 (7)−0.0060 (6)
O10.0905 (12)0.0415 (9)0.0516 (9)0.0066 (8)0.0359 (8)−0.0060 (7)
O20.0520 (9)0.0478 (9)0.0635 (9)−0.0086 (7)−0.0032 (7)−0.0030 (7)
O30.1027 (14)0.0303 (9)0.0566 (9)0.0054 (8)0.0096 (9)−0.0073 (7)
S10.0493 (3)0.0279 (3)0.0407 (3)−0.0024 (2)0.0130 (2)−0.00589 (19)

Geometric parameters (Å, °)

C1—C101.521 (3)C10—H100.9800
C1—C61.536 (3)C11—H11A0.9600
C1—C21.541 (3)C11—H11B0.9600
C1—C71.570 (3)C11—H11C0.9600
C2—C31.532 (3)C12—O31.215 (2)
C2—H2A0.9700C12—N11.385 (3)
C2—H2B0.9700C12—C131.521 (3)
C3—C41.544 (4)C13—C151.516 (3)
C3—H3A0.9700C13—C141.537 (3)
C3—H3B0.9700C13—H130.9800
C4—C51.532 (3)C14—H14A0.9600
C4—C71.544 (3)C14—H14B0.9600
C4—H40.9800C14—H14C0.9600
C5—C61.550 (3)C15—C161.386 (3)
C5—H5A0.9700C15—C201.389 (3)
C5—H5B0.9700C16—C171.371 (3)
C6—N11.481 (2)C16—H160.9300
C6—H60.9800C17—C181.377 (3)
C7—C91.532 (3)C17—H170.9300
C7—C81.533 (3)C18—C191.367 (3)
C8—H8A0.9600C18—Cl11.745 (2)
C8—H8B0.9600C19—C201.378 (3)
C8—H8C0.9600C19—H190.9300
C9—H9A0.9600C20—H200.9300
C9—H9B0.9600N1—S11.6915 (15)
C9—H9C0.9600O1—S11.4241 (15)
C10—C111.526 (3)O2—S11.4343 (16)
C10—S11.810 (2)
C10—C1—C6109.61 (15)C1—C10—C11115.50 (17)
C10—C1—C2117.09 (17)C1—C10—S1105.23 (13)
C6—C1—C2104.82 (16)C11—C10—S1109.72 (15)
C10—C1—C7118.83 (16)C1—C10—H10108.7
C6—C1—C7103.48 (16)C11—C10—H10108.7
C2—C1—C7101.34 (16)S1—C10—H10108.7
C3—C2—C1103.66 (19)C10—C11—H11A109.5
C3—C2—H2A111.0C10—C11—H11B109.5
C1—C2—H2A111.0H11A—C11—H11B109.5
C3—C2—H2B111.0C10—C11—H11C109.5
C1—C2—H2B111.0H11A—C11—H11C109.5
H2A—C2—H2B109.0H11B—C11—H11C109.5
C2—C3—C4103.16 (18)O3—C12—N1118.56 (18)
C2—C3—H3A111.1O3—C12—C13122.27 (19)
C4—C3—H3A111.1N1—C12—C13119.09 (17)
C2—C3—H3B111.1C15—C13—C12111.07 (16)
C4—C3—H3B111.1C15—C13—C14111.81 (17)
H3A—C3—H3B109.1C12—C13—C14107.14 (18)
C5—C4—C7102.28 (17)C15—C13—H13108.9
C5—C4—C3107.8 (2)C12—C13—H13108.9
C7—C4—C3102.8 (2)C14—C13—H13108.9
C5—C4—H4114.2C13—C14—H14A109.5
C7—C4—H4114.2C13—C14—H14B109.5
C3—C4—H4114.2H14A—C14—H14B109.5
C4—C5—C6102.59 (19)C13—C14—H14C109.5
C4—C5—H5A111.2H14A—C14—H14C109.5
C6—C5—H5A111.2H14B—C14—H14C109.5
C4—C5—H5B111.2C16—C15—C20117.5 (2)
C6—C5—H5B111.2C16—C15—C13120.57 (19)
H5A—C5—H5B109.2C20—C15—C13121.93 (18)
N1—C6—C1106.71 (14)C17—C16—C15121.8 (2)
N1—C6—C5116.52 (17)C17—C16—H16119.1
C1—C6—C5103.53 (16)C15—C16—H16119.1
N1—C6—H6109.9C16—C17—C18119.1 (2)
C1—C6—H6109.9C16—C17—H17120.4
C5—C6—H6109.9C18—C17—H17120.4
C9—C7—C8106.7 (2)C19—C18—C17120.7 (2)
C9—C7—C4113.4 (2)C19—C18—Cl1120.40 (19)
C8—C7—C4114.6 (2)C17—C18—Cl1118.87 (18)
C9—C7—C1116.57 (17)C18—C19—C20119.6 (2)
C8—C7—C1113.1 (2)C18—C19—H19120.2
C4—C7—C192.46 (16)C20—C19—H19120.2
C7—C8—H8A109.5C19—C20—C15121.2 (2)
C7—C8—H8B109.5C19—C20—H20119.4
H8A—C8—H8B109.5C15—C20—H20119.4
C7—C8—H8C109.5C12—N1—C6120.10 (15)
H8A—C8—H8C109.5C12—N1—S1123.93 (13)
H8B—C8—H8C109.5C6—N1—S1112.09 (12)
C7—C9—H9A109.5O1—S1—O2117.03 (10)
C7—C9—H9B109.5O1—S1—N1109.78 (9)
H9A—C9—H9B109.5O2—S1—N1108.73 (8)
C7—C9—H9C109.5O1—S1—C10111.31 (9)
H9A—C9—H9C109.5O2—S1—C10111.68 (9)
H9B—C9—H9C109.5N1—S1—C1096.30 (8)
C10—C1—C2—C3−168.08 (18)N1—C12—C13—C15−120.03 (19)
C6—C1—C2—C370.2 (2)O3—C12—C13—C14−59.1 (3)
C7—C1—C2—C3−37.2 (2)N1—C12—C13—C14117.6 (2)
C1—C2—C3—C42.0 (3)C12—C13—C15—C16123.37 (19)
C2—C3—C4—C5−73.0 (2)C14—C13—C15—C16−117.0 (2)
C2—C3—C4—C734.6 (2)C12—C13—C15—C20−58.3 (2)
C7—C4—C5—C6−40.9 (2)C14—C13—C15—C2061.3 (3)
C3—C4—C5—C667.0 (2)C20—C15—C16—C170.9 (3)
C10—C1—C6—N134.1 (2)C13—C15—C16—C17179.30 (19)
C2—C1—C6—N1160.52 (16)C15—C16—C17—C181.1 (3)
C7—C1—C6—N1−93.67 (17)C16—C17—C18—C19−1.9 (3)
C10—C1—C6—C5157.54 (16)C16—C17—C18—Cl1176.76 (17)
C2—C1—C6—C5−75.99 (19)C17—C18—C19—C200.6 (4)
C7—C1—C6—C529.83 (19)Cl1—C18—C19—C20−178.02 (18)
C4—C5—C6—N1123.01 (19)C18—C19—C20—C151.5 (3)
C4—C5—C6—C16.2 (2)C16—C15—C20—C19−2.2 (3)
C5—C4—C7—C9−63.7 (2)C13—C15—C20—C19179.41 (19)
C3—C4—C7—C9−175.50 (19)O3—C12—N1—C6−4.0 (3)
C5—C4—C7—C8173.5 (2)C13—C12—N1—C6179.12 (16)
C3—C4—C7—C861.8 (2)O3—C12—N1—S1−160.07 (17)
C5—C4—C7—C156.7 (2)C13—C12—N1—S123.1 (3)
C3—C4—C7—C1−55.07 (19)C1—C6—N1—C12175.03 (16)
C10—C1—C7—C9−56.5 (3)C5—C6—N1—C1260.0 (2)
C6—C1—C7—C965.2 (2)C1—C6—N1—S1−26.31 (17)
C2—C1—C7—C9173.7 (2)C5—C6—N1—S1−141.33 (15)
C10—C1—C7—C867.7 (2)C12—N1—S1—O1−77.31 (17)
C6—C1—C7—C8−170.59 (19)C6—N1—S1—O1124.98 (13)
C2—C1—C7—C8−62.1 (2)C12—N1—S1—O251.88 (18)
C10—C1—C7—C4−174.24 (18)C6—N1—S1—O2−105.83 (14)
C6—C1—C7—C4−52.52 (18)C12—N1—S1—C10167.33 (16)
C2—C1—C7—C455.9 (2)C6—N1—S1—C109.63 (14)
C6—C1—C10—C1194.4 (2)C1—C10—S1—O1−103.83 (14)
C2—C1—C10—C11−24.8 (3)C11—C10—S1—O1131.31 (15)
C7—C1—C10—C11−147.01 (19)C1—C10—S1—O2123.33 (13)
C6—C1—C10—S1−26.75 (17)C11—C10—S1—O2−1.53 (18)
C2—C1—C10—S1−145.91 (16)C1—C10—S1—N110.28 (13)
C7—C1—C10—S191.84 (18)C11—C10—S1—N1−114.58 (15)
O3—C12—C13—C1563.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20···O30.932.563.038 (3)112
C13—H13···O10.982.493.278 (2)137
C9—H9C···N10.962.523.098 (3)118
C10—H10···O3i0.982.543.191 (2)124

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2086).

References

  • Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lu, W.-C., Cao, J., Cheng, C., Yu, G.-A. & Liu, S.-H. (2008). Acta Cryst. E64, o454. [PMC free article] [PubMed]
  • Oppolzer, W. (1989). Tetrahedron Lett.41, 5603–5606.
  • Oppolzer, W. (1990). Pure Appl. Chem.62, 1241–1250.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography