PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1533.
Published online 2008 July 19. doi:  10.1107/S1600536808021855
PMCID: PMC2962158

N-(Fluoren-9-ylmethoxy­carbon­yl)-l-isoleucine

Abstract

In the crystal structure of the title compound [systematic name fluoren-9-ylmethyl N-(1-carb­oxy-2-methyl­butyl)carbamate], C21H23NO4, the mol­ecular plane of the O=C—NH—Cα unit is slightly pyramidalized. The N atom deviates from the basal plane by 0.2086 (12) Å. The O=C—N—Cα torsion angle is −17.2 (2)°, and the C—N and O=C bond lengths are 1.3675 (17) and 1.2122 (17) Å, respectively. Apparently the character of the sp 2 hybrids of the mol­ecular plane is, to some extent, reduced. The crystal structure exhibits two inter­molecular hydrogen bonds (O—H(...)O and N—H(...)O), in which the hydr­oxy O atom acts as a donor to the carbonyl group and an acceptor of the amide group, respectively.

Related literature

For related literature on the crystal structures of N-α-fluoren-9-ylmethoxy­carbonyl-protected amino acids, see: Valle et al. (1984 [triangle]); Yamada, Hashizume & Shimizu (2008 [triangle]); Yamada, Hashizume, Shimizu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1533-scheme1.jpg

Experimental

Crystal data

  • C21H23NO4
  • M r = 353.40
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1533-efi1.jpg
  • a = 5.3337 (2) Å
  • b = 13.6965 (4) Å
  • c = 25.2514 (9) Å
  • V = 1844.70 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 90 K
  • 0.77 × 0.06 × 0.04 mm

Data collection

  • Rigaku AFC-8 diffractometer with Saturn70 CCD
  • Absorption correction: none
  • 19825 measured reflections
  • 3351 independent reflections
  • 2993 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.084
  • S = 1.03
  • 3351 reflections
  • 327 parameters
  • All H-atom parameters refined
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021855/is2313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021855/is2313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KY thanks the Ministry of Education, Science, Sports, Culture and Technology (MEXT) of Japan for funding this work [Young Scientists (B), 20750022]. TS appreciates support from the World Premier International Research Center Initiative on Materials Nanoarchitronics at NIMS, from MEXT. KD acknowledges the Nanotechnology Support of MEXT.

supplementary crystallographic information

Comment

The fluoren-9-ylmethoxycarbonyl (Fmoc) group is commonly used for protecting the terminal amine of the peptide for the current solid-phase peptide synthesis protocol. This is because cleavage of the Fmoc protecting group is easily achieved by mild basis conditions, e.g., piperidine, but it is very stable under acidic conditions. The crystal structures of N-α-Fmoc-protected-L-alanine monohydrate (Valle et al., 1984), -O-t-butyl-L-serine (Yamada, Hashizume, Shimizu, Ohiki & Yokoyama, 2008) and –L-leucine (Yamada, Hashizume & Shimizu, 2008) have been studied. In this communication, we will report the structure of N-α-Fmoc-L-isoleucine, (I) (Fig. 1).

It is interesting to compare the present structure with that of the analog of the title compound, i.e., N-α-Fmoc-protected-L-leucine, (II). A large fraction of the bond distances and angles, and torsion angles of (I) are consistent with those of (II) except for the following points. First, the orientation of the carboxyl group around the C1—C6 bond is found to be opposite. The torsion angle of O2—C6—C1—N1 for (I) is -6.3 (2)°, while the corresponding angle of (II) is 159.29 (17)°. Second, the angle between the fluorine ring and the NC(=O)O plane is quite different. For example, the torsion angle of C7—O4—C8—C9 and O4—C8—C9—C10 are 121.17 (13) and -73.17 (14)°, respectively, for (I). The corresponding torsion angles of (II), on the other hand, are 93.78 (16) and 60.54 (17)°, respectively. Third, it can be seen that the O3—C7—N1—C1 plane of (I) is slightly pyramided. The N1 atom deviates from the basal plane (C1, C7, H1N) by 0.2086 (12) Å. Moreover, the distances of the N1—C7 and O3—C7 bonds are 1.3675 (17) and 1.2122 (17) Å, respectively, which are approximately 0.026 longer and 0.010 Å shorter than the corresponding bond lengths of (II), respectively. Apparently, the sp2 character of the N1 atom is, to some extent, reduced.

In addition, hydrogen-bond environments are slightly different between the two Fmoc-protected L-amino acids. The crystal of (I) contains two intermolecular hydrogen bonds (Table 1), while that of (II) has three hydrogen bonds. For (I), atom O1 forms two hydrogen bonds with O2 and N1, as shown in Figure 2. The molecules, which related by translation along the a axis are assembled via the N1—H1N···O1 hydrogen bonds to form a one dimensional tape structure. The tapes around the 21 axis, which is parallel to the a axis, are joined together, then the column structure is formed.

Experimental

A powdered sample of the title compound (I) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and was used for the sample preparation without further purifications. Colorless needle like crystals of (I) were obtained from a saturated dichloromethane solution.

Refinement

All H atoms were found on a difference map and were refined applying isotropic temperature factors.

The refined C—H, N—H or O—H dimensions are in the normal range: 0.975 (19)–1.015 (19) Å and 104.8 (10)–113.8 (11)° for C—H and C/N—C—H, respectively, for methyne; 0.942 (17)–1.01 (2) Å, 106.6 (13)–111.4 (12)° and 107.1 (18)–108.6 (14)° for C—H, C/O—C—H and H—C—H for methylene; 0.98 (3)–1.03 (3) Å, 109.5 (11)–112.8 (13)° and 104 (2)–111 (2)° for C—H, C—C—H and H—C—H, respectively, for methyl; 0.96 (2)–1.005 (19) Å and 117.7 (11)–123.1 (11)° for C—H and C—C—H, respectively, for aromatic; 0.88 (2) Å and 115.3 (12)–116.5 (12)° for N—H and C—N—H, respectively, for amide; 0.88 (2) Å and 108.7 (15)° for O—H and C—O—H, respectively, for hydroxyl. The range of the Uiso values of the H atoms are 0.016 (4)–0.067 (8) Å2.

In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.
A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). The hydrogen atoms were omitted for clarity, except for those forming the hydrogen bonds. The hydrogen bonds are shown as blue and green broken lines for N—H···O and O—H···O ...

Crystal data

C21H23NO4F000 = 752
Mr = 353.40Dx = 1.272 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19896 reflections
a = 5.3337 (2) Åθ = 1.6–31.0º
b = 13.6965 (4) ŵ = 0.09 mm1
c = 25.2514 (9) ÅT = 90 K
V = 1844.70 (11) Å3Needle, colourless
Z = 40.77 × 0.06 × 0.04 mm

Data collection

Rigaku AFC-8 with Saturn70 CCD diffractometer3351 independent reflections
Radiation source: fine-focus rotating anode2993 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.043
Detector resolution: 28.5714 pixels mm-1θmax = 31.0º
T = 90 Kθmin = 1.6º
ω scansh = −7→7
Absorption correction: nonek = −13→19
19825 measured reflectionsl = −36→36

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.084  w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2178P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3351 reflectionsΔρmax = 0.23 e Å3
327 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. All Friedel pairs were merged, and all f''s of containing atoms were set to zero.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0029 (2)0.12876 (8)0.48657 (4)0.0236 (2)
H1H−0.038 (4)0.1865 (16)0.5004 (8)0.040 (6)*
O20.3719 (2)0.19896 (8)0.47355 (4)0.0287 (2)
O30.4252 (2)0.06814 (8)0.34059 (4)0.0254 (2)
O40.83023 (19)0.09577 (8)0.36430 (4)0.0219 (2)
N10.5644 (2)0.03926 (9)0.42480 (4)0.0201 (2)
H1N0.683 (4)0.0588 (14)0.4465 (7)0.028 (5)*
C10.3145 (3)0.03122 (10)0.44681 (5)0.0198 (3)
H10.201 (4)0.0187 (13)0.4152 (7)0.029 (5)*
C20.2942 (3)−0.05077 (10)0.48868 (5)0.0221 (3)
H20.124 (4)−0.0497 (14)0.5026 (7)0.025 (5)*
C30.4615 (4)−0.03098 (13)0.53677 (6)0.0322 (4)
H3A0.641 (5)−0.0353 (16)0.5239 (9)0.045 (6)*
H3B0.433 (4)0.0382 (16)0.5491 (8)0.043 (6)*
C40.4141 (5)−0.10079 (16)0.58280 (7)0.0429 (5)
H4A0.524 (5)−0.0821 (19)0.6146 (10)0.063 (7)*
H4B0.449 (5)−0.1707 (17)0.5734 (9)0.050 (6)*
H4C0.237 (6)−0.1000 (19)0.5925 (10)0.067 (8)*
C50.3466 (4)−0.14964 (12)0.46325 (7)0.0321 (4)
H5A0.235 (4)−0.1587 (15)0.4308 (9)0.043 (6)*
H5B0.302 (4)−0.2030 (14)0.4887 (8)0.034 (5)*
H5C0.526 (5)−0.1554 (16)0.4525 (8)0.040 (6)*
C60.2335 (3)0.12921 (10)0.47018 (5)0.0209 (3)
C70.5913 (3)0.06860 (10)0.37335 (5)0.0195 (3)
C80.8909 (3)0.12808 (11)0.31097 (5)0.0214 (3)
H8A1.018 (4)0.0822 (13)0.2966 (7)0.023 (4)*
H8B0.746 (3)0.1242 (12)0.2898 (6)0.016 (4)*
C90.9917 (3)0.23248 (10)0.31308 (5)0.0218 (3)
H91.136 (4)0.2340 (14)0.3393 (7)0.033 (5)*
C100.7894 (3)0.30772 (10)0.32413 (5)0.0227 (3)
C110.6461 (3)0.32177 (11)0.36923 (6)0.0273 (3)
H110.678 (4)0.2802 (14)0.4013 (7)0.032 (5)*
C120.4624 (3)0.39449 (12)0.36893 (6)0.0307 (3)
H120.365 (4)0.4056 (14)0.4011 (8)0.037 (5)*
C130.4225 (3)0.45181 (12)0.32390 (7)0.0307 (3)
H130.289 (4)0.5019 (16)0.3241 (8)0.038 (5)*
C140.5681 (3)0.43873 (11)0.27881 (6)0.0272 (3)
H140.540 (4)0.4779 (14)0.2461 (8)0.033 (5)*
C150.7524 (3)0.36682 (10)0.27912 (5)0.0222 (3)
C160.9326 (3)0.33767 (10)0.23824 (5)0.0218 (3)
C170.9758 (3)0.37521 (11)0.18767 (5)0.0251 (3)
H170.877 (4)0.4283 (15)0.1741 (7)0.033 (5)*
C181.1730 (3)0.33647 (11)0.15819 (6)0.0271 (3)
H181.201 (4)0.3628 (13)0.1225 (7)0.027 (4)*
C191.3197 (3)0.26081 (11)0.17784 (6)0.0270 (3)
H191.452 (4)0.2330 (14)0.1573 (7)0.030 (5)*
C201.2715 (3)0.22127 (11)0.22789 (6)0.0248 (3)
H201.374 (4)0.1663 (14)0.2398 (7)0.029 (5)*
C211.0792 (3)0.26106 (10)0.25795 (5)0.0219 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0187 (5)0.0237 (5)0.0284 (5)0.0005 (4)0.0011 (4)−0.0042 (4)
O20.0264 (6)0.0232 (5)0.0365 (5)−0.0060 (5)0.0050 (5)−0.0056 (4)
O30.0191 (5)0.0341 (5)0.0231 (4)−0.0028 (5)−0.0025 (4)0.0014 (4)
O40.0169 (5)0.0277 (5)0.0210 (4)−0.0022 (4)−0.0003 (4)0.0047 (4)
N10.0162 (5)0.0243 (5)0.0199 (5)−0.0010 (5)−0.0006 (4)0.0006 (4)
C10.0166 (6)0.0209 (6)0.0219 (6)−0.0012 (5)0.0009 (5)−0.0011 (5)
C20.0196 (6)0.0214 (6)0.0254 (6)−0.0013 (5)0.0031 (5)0.0008 (5)
C30.0373 (10)0.0340 (8)0.0253 (7)−0.0043 (7)−0.0023 (6)0.0050 (6)
C40.0577 (13)0.0424 (10)0.0287 (8)−0.0021 (10)−0.0003 (8)0.0117 (7)
C50.0400 (10)0.0229 (7)0.0334 (7)0.0015 (7)0.0038 (7)0.0012 (6)
C60.0197 (7)0.0229 (6)0.0203 (5)−0.0006 (6)−0.0005 (5)−0.0009 (5)
C70.0177 (6)0.0186 (6)0.0222 (6)−0.0001 (5)0.0011 (5)−0.0005 (4)
C80.0203 (7)0.0250 (6)0.0189 (5)−0.0008 (6)0.0003 (5)0.0040 (5)
C90.0197 (6)0.0244 (6)0.0214 (6)−0.0024 (5)−0.0004 (5)0.0024 (5)
C100.0221 (7)0.0228 (6)0.0233 (6)−0.0024 (6)−0.0008 (5)−0.0009 (5)
C110.0298 (8)0.0280 (7)0.0239 (6)−0.0033 (6)0.0026 (6)−0.0008 (5)
C120.0306 (8)0.0310 (8)0.0306 (7)−0.0015 (7)0.0065 (6)−0.0053 (6)
C130.0287 (8)0.0268 (7)0.0367 (7)0.0032 (7)0.0011 (6)−0.0055 (6)
C140.0292 (8)0.0239 (7)0.0287 (7)0.0014 (6)−0.0022 (6)−0.0001 (5)
C150.0217 (7)0.0215 (6)0.0234 (6)−0.0035 (6)−0.0012 (5)−0.0013 (5)
C160.0206 (7)0.0215 (6)0.0234 (6)−0.0034 (5)−0.0004 (5)−0.0001 (5)
C170.0295 (8)0.0228 (6)0.0230 (6)−0.0015 (6)−0.0005 (6)0.0018 (5)
C180.0322 (9)0.0267 (7)0.0224 (6)−0.0064 (6)0.0031 (6)0.0012 (5)
C190.0245 (8)0.0290 (7)0.0274 (6)−0.0037 (6)0.0040 (6)−0.0027 (5)
C200.0209 (7)0.0257 (7)0.0277 (6)−0.0028 (6)0.0008 (6)0.0007 (5)
C210.0192 (7)0.0233 (6)0.0230 (6)−0.0039 (6)−0.0005 (5)0.0012 (5)

Geometric parameters (Å, °)

O1—C61.3270 (18)C8—H8B0.942 (17)
O1—H1H0.88 (2)C9—C101.518 (2)
O2—C61.2102 (18)C9—C211.5196 (18)
O3—C71.2122 (17)C9—H91.01 (2)
O4—C71.3471 (17)C10—C111.385 (2)
O4—C81.4541 (16)C10—C151.4092 (19)
N1—C71.3675 (17)C11—C121.397 (2)
N1—C11.4484 (18)C11—H111.005 (19)
N1—H1N0.88 (2)C12—C131.398 (2)
C1—C61.5284 (19)C12—H120.98 (2)
C1—C21.5462 (19)C13—C141.390 (2)
C1—H11.015 (19)C13—H130.99 (2)
C2—C51.525 (2)C14—C151.392 (2)
C2—C31.531 (2)C14—H141.00 (2)
C2—H20.975 (19)C15—C161.466 (2)
C3—C41.526 (2)C16—C171.3957 (19)
C3—H3A1.01 (2)C16—C211.400 (2)
C3—H3B1.01 (2)C17—C181.393 (2)
C4—H4A1.03 (3)C17—H170.96 (2)
C4—H4B1.00 (2)C18—C191.390 (2)
C4—H4C0.98 (3)C18—H180.983 (18)
C5—H5A1.02 (2)C19—C201.399 (2)
C5—H5B1.00 (2)C19—H190.96 (2)
C5—H5C1.00 (2)C20—C211.387 (2)
C8—C91.529 (2)C20—H200.98 (2)
C8—H8A0.993 (19)
C6—O1—H1H108.7 (15)C9—C8—H8B111.2 (10)
C7—O4—C8116.86 (11)H8A—C8—H8B108.6 (14)
C7—N1—C1118.91 (12)C10—C9—C21102.23 (11)
C7—N1—H1N115.3 (12)C10—C9—C8113.04 (12)
C1—N1—H1N116.5 (12)C21—C9—C8108.49 (11)
N1—C1—C6109.97 (11)C10—C9—H9113.8 (11)
N1—C1—C2112.46 (11)C21—C9—H9111.1 (11)
C6—C1—C2110.73 (11)C8—C9—H9108.0 (11)
N1—C1—H1105.0 (11)C11—C10—C15120.39 (14)
C6—C1—H1106.5 (10)C11—C10—C9129.63 (13)
C2—C1—H1111.9 (11)C15—C10—C9109.96 (12)
C5—C2—C3112.62 (14)C10—C11—C12118.80 (14)
C5—C2—C1110.13 (12)C10—C11—H11119.3 (11)
C3—C2—C1111.90 (12)C12—C11—H11121.9 (11)
C5—C2—H2109.7 (11)C11—C12—C13120.76 (15)
C3—C2—H2104.8 (10)C11—C12—H12118.6 (12)
C1—C2—H2107.5 (11)C13—C12—H12120.6 (12)
C4—C3—C2113.36 (15)C14—C13—C12120.59 (15)
C4—C3—H3A111.4 (12)C14—C13—H13119.7 (12)
C2—C3—H3A106.6 (13)C12—C13—H13119.7 (12)
C4—C3—H3B109.2 (12)C13—C14—C15118.76 (14)
C2—C3—H3B108.9 (12)C13—C14—H14121.6 (12)
H3A—C3—H3B107.1 (19)C15—C14—H14119.6 (12)
C3—C4—H4A110.2 (15)C14—C15—C10120.68 (13)
C3—C4—H4B112.8 (13)C14—C15—C16130.69 (13)
H4A—C4—H4B109 (2)C10—C15—C16108.64 (13)
C3—C4—H4C110.1 (16)C17—C16—C21120.60 (13)
H4A—C4—H4C111 (2)C17—C16—C15130.71 (14)
H4B—C4—H4C104 (2)C21—C16—C15108.66 (12)
C2—C5—H5A109.8 (12)C18—C17—C16118.24 (14)
C2—C5—H5B109.5 (11)C18—C17—H17120.8 (12)
H5A—C5—H5B106.7 (17)C16—C17—H17121.0 (12)
C2—C5—H5C111.2 (13)C19—C18—C17121.20 (14)
H5A—C5—H5C109.4 (17)C19—C18—H18121.0 (11)
H5B—C5—H5C110.2 (17)C17—C18—H18117.7 (11)
O2—C6—O1124.13 (13)C18—C19—C20120.52 (15)
O2—C6—C1123.22 (13)C18—C19—H19121.3 (11)
O1—C6—C1112.64 (12)C20—C19—H19118.1 (11)
O3—C7—O4125.25 (12)C21—C20—C19118.54 (14)
O3—C7—N1124.76 (13)C21—C20—H20123.1 (11)
O4—C7—N1109.97 (12)C19—C20—H20118.4 (11)
O4—C8—C9109.32 (11)C20—C21—C16120.86 (12)
O4—C8—H8A107.3 (10)C20—C21—C9128.82 (13)
C9—C8—H8A111.3 (10)C16—C21—C9110.31 (12)
O4—C8—H8B109.0 (10)
C7—N1—C1—C6−88.14 (15)C12—C13—C14—C150.7 (2)
C7—N1—C1—C2147.96 (12)C13—C14—C15—C100.6 (2)
N1—C1—C2—C5−62.96 (16)C13—C14—C15—C16−179.33 (15)
C6—C1—C2—C5173.56 (13)C11—C10—C15—C14−1.4 (2)
N1—C1—C2—C363.11 (16)C9—C10—C15—C14177.23 (13)
C6—C1—C2—C3−60.37 (16)C11—C10—C15—C16178.54 (13)
C5—C2—C3—C4−65.0 (2)C9—C10—C15—C16−2.87 (16)
C1—C2—C3—C4170.27 (15)C14—C15—C16—C171.9 (3)
N1—C1—C6—O2−6.34 (19)C10—C15—C16—C17−178.03 (15)
C2—C1—C6—O2118.56 (15)C14—C15—C16—C21179.97 (15)
N1—C1—C6—O1174.17 (11)C10—C15—C16—C210.08 (16)
C2—C1—C6—O1−60.94 (15)C21—C16—C17—C18−1.9 (2)
C8—O4—C7—O30.8 (2)C15—C16—C17—C18176.00 (14)
C8—O4—C7—N1179.33 (11)C16—C17—C18—C191.5 (2)
C1—N1—C7—O3−17.2 (2)C17—C18—C19—C200.3 (2)
C1—N1—C7—O4164.18 (11)C18—C19—C20—C21−1.8 (2)
C7—O4—C8—C9121.17 (13)C19—C20—C21—C161.4 (2)
O4—C8—C9—C10−73.17 (14)C19—C20—C21—C9−179.33 (14)
O4—C8—C9—C21174.19 (12)C17—C16—C21—C200.5 (2)
C21—C9—C10—C11−177.33 (15)C15—C16—C21—C20−177.88 (13)
C8—C9—C10—C1166.3 (2)C17—C16—C21—C9−178.93 (13)
C21—C9—C10—C154.25 (15)C15—C16—C21—C92.74 (16)
C8—C9—C10—C15−112.17 (13)C10—C9—C21—C20176.47 (14)
C15—C10—C11—C120.9 (2)C8—C9—C21—C20−63.88 (19)
C9—C10—C11—C12−177.41 (15)C10—C9—C21—C16−4.22 (15)
C10—C11—C12—C130.4 (2)C8—C9—C21—C16115.44 (13)
C11—C12—C13—C14−1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1H···O2i0.88 (2)1.77 (2)2.6511 (14)176 (2)
N1—H1N···O1ii0.88 (2)2.18 (2)3.0433 (16)167.6 (17)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2313).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem.62, 2661–2666.
  • Yamada, K., Hashizume, D. & Shimizu, T. (2008). Acta Cryst. E64, o1112. [PMC free article] [PubMed]
  • Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography