PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1522.
Published online 2008 July 19. doi:  10.1107/S1600536808021831
PMCID: PMC2962148

2,2-Dichloro-N-(phenyl­sulfon­yl)­acetamide

Abstract

The conformation of the N—H and C=O bonds in the title compound, C8H7Cl2NO3S, is trans. The benzene ring and the SO2—NH—CO—C group form a dihedral angle of 79.75 (8)°. Mol­ecules are connected via N—H(...)O hydrogen bonds to form linear supra­molecular chains.

Related literature

For related literature, see: Gowda et al. (2006 [triangle], 2007 [triangle], 2008a [triangle],b [triangle]); Gowda, Foro, Nirmala et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1522-scheme1.jpg

Experimental

Crystal data

  • C8H7Cl2NO3S
  • M r = 268.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1522-efi1.jpg
  • a = 9.669 (1) Å
  • b = 10.462 (1) Å
  • c = 21.024 (2) Å
  • V = 2126.7 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 299 (2) K
  • 0.48 × 0.48 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.689, T max = 0.728
  • 9241 measured reflections
  • 2156 independent reflections
  • 1729 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.127
  • S = 1.13
  • 2156 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021831/tk2284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021831/tk2284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides and substituted amides (Gowda et al., 2006, 2007, 2008a,b; Gowda, Foro, Nirmala et al., 2008), the structure of N-(phenylsulfonyl)-2,2-dichloroacetamide (I) has been determined. The conformation of the N—H and C=O bonds is trans (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (Gowda et al., 2008b), N-(4-methylphenylsulfonyl)- 2,2-dichloroacetamide (Gowda, Foro, Nirmala et al., 2008) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (Gowda et al., 2008a). Further, the bond parameters in (I) are similar to those in the aforementioned structures and in each of N-(aryl)-2,2-dichloroacetamides (Gowda et al., 2006) and benzenesulfonamide (Gowda et al., 2007). The crystal packing diagram of (I) is dominated by N—H···O hydrogen bonds (Table 1) that lead to supramolecular chains that stack to form layers, as shown in Fig. 2.

Experimental

Compound (I) was prepared by refluxing benzenesulfonamide (0.10 mole) with an excess of dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. Compound (I) was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Single crystals used for X-ray diffraction studies were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement

The H atoms were included in the riding model approximation with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and with U(H)iso = 1.2xUeq(C, N).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
View of the molecular packing in (I) with hydrogen bonding shown as dashed lines.

Crystal data

C8H7Cl2NO3SF000 = 1088
Mr = 268.11Dx = 1.675 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3214 reflections
a = 9.669 (1) Åθ = 2.8–27.9º
b = 10.462 (1) ŵ = 0.79 mm1
c = 21.024 (2) ÅT = 299 (2) K
V = 2126.7 (4) Å3Prism, colourless
Z = 80.48 × 0.48 × 0.40 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2156 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 2.9º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −11→12
Tmin = 0.689, Tmax = 0.728k = −12→13
9241 measured reflectionsl = −24→25

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.0496P)2 + 3.3191P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max = 0.005
S = 1.13Δρmax = 0.46 e Å3
2156 reflectionsΔρmin = −0.61 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0159 (14)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2304 (3)0.7731 (3)0.09583 (13)0.0374 (7)
C20.3659 (4)0.7611 (4)0.07699 (17)0.0546 (9)
H20.42580.70740.09900.066*
C30.4121 (4)0.8294 (4)0.0250 (2)0.0686 (12)
H30.50430.82350.01270.082*
C40.3236 (5)0.9055 (4)−0.00819 (18)0.0663 (11)
H40.35420.9468−0.04470.080*
C50.1901 (5)0.9217 (4)0.0117 (2)0.0742 (13)
H50.13160.9773−0.01000.089*
C60.1421 (4)0.8553 (4)0.06421 (18)0.0615 (10)
H60.05150.86580.07800.074*
C70.2865 (3)0.8421 (3)0.24530 (13)0.0315 (6)
C80.2599 (3)0.9313 (3)0.30181 (14)0.0383 (7)
H80.18150.98750.29230.046*
N10.1690 (2)0.7905 (2)0.22078 (11)0.0317 (5)
H1N0.09090.81320.23680.038*
O10.0258 (2)0.6569 (2)0.15258 (11)0.0517 (6)
O20.2658 (2)0.5866 (2)0.17518 (11)0.0474 (6)
O30.40112 (19)0.8193 (2)0.22517 (10)0.0425 (5)
Cl10.40794 (9)1.02379 (8)0.31696 (4)0.0542 (3)
Cl20.22066 (11)0.83545 (10)0.36880 (4)0.0626 (3)
S10.16902 (7)0.68542 (7)0.16113 (3)0.0355 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0444 (16)0.0402 (16)0.0275 (13)0.0016 (13)−0.0022 (12)−0.0021 (12)
C20.0468 (18)0.069 (2)0.0481 (19)0.0057 (18)0.0038 (15)0.0114 (17)
C30.060 (2)0.088 (3)0.059 (2)−0.001 (2)0.0103 (19)0.018 (2)
C40.086 (3)0.073 (3)0.0405 (19)−0.007 (2)0.0074 (19)0.0124 (18)
C50.092 (3)0.074 (3)0.057 (2)0.024 (3)−0.002 (2)0.024 (2)
C60.059 (2)0.077 (3)0.0480 (19)0.025 (2)0.0045 (17)0.0120 (18)
C70.0317 (14)0.0342 (13)0.0285 (13)0.0023 (11)−0.0048 (11)0.0012 (11)
C80.0379 (14)0.0392 (16)0.0377 (15)0.0014 (13)−0.0053 (12)−0.0059 (12)
N10.0231 (10)0.0409 (13)0.0310 (11)0.0013 (9)0.0000 (9)−0.0042 (10)
O10.0397 (12)0.0637 (15)0.0517 (13)−0.0144 (11)−0.0074 (10)−0.0088 (11)
O20.0553 (13)0.0384 (12)0.0486 (12)0.0084 (10)0.0025 (11)0.0014 (10)
O30.0247 (10)0.0621 (14)0.0407 (11)0.0015 (9)−0.0020 (8)−0.0080 (10)
Cl10.0589 (5)0.0460 (5)0.0577 (5)−0.0117 (4)−0.0141 (4)−0.0070 (4)
Cl20.0783 (7)0.0726 (6)0.0369 (4)−0.0188 (5)0.0138 (4)−0.0085 (4)
S10.0355 (4)0.0372 (4)0.0338 (4)−0.0009 (3)−0.0024 (3)−0.0022 (3)

Geometric parameters (Å, °)

C1—C21.375 (5)C6—H60.9300
C1—C61.382 (5)C7—O31.210 (3)
C1—S11.755 (3)C7—N11.359 (3)
C2—C31.380 (5)C7—C81.533 (4)
C2—H20.9300C8—Cl11.757 (3)
C3—C41.361 (6)C8—Cl21.770 (3)
C3—H30.9300C8—H80.9800
C4—C51.368 (6)N1—S11.668 (2)
C4—H40.9300N1—H1N0.8600
C5—C61.384 (6)O1—S11.428 (2)
C5—H50.9300O2—S11.425 (2)
C2—C1—C6120.5 (3)O3—C7—N1123.7 (3)
C2—C1—S1120.0 (2)O3—C7—C8123.0 (2)
C6—C1—S1119.5 (3)N1—C7—C8113.3 (2)
C1—C2—C3119.3 (3)C7—C8—Cl1109.8 (2)
C1—C2—H2120.3C7—C8—Cl2107.9 (2)
C3—C2—H2120.3Cl1—C8—Cl2110.02 (16)
C4—C3—C2120.4 (4)C7—C8—H8109.7
C4—C3—H3119.8Cl1—C8—H8109.7
C2—C3—H3119.8Cl2—C8—H8109.7
C3—C4—C5120.6 (4)C7—N1—S1123.15 (19)
C3—C4—H4119.7C7—N1—H1N118.4
C5—C4—H4119.7S1—N1—H1N118.4
C4—C5—C6119.8 (4)O2—S1—O1120.73 (15)
C4—C5—H5120.1O2—S1—N1108.81 (13)
C6—C5—H5120.1O1—S1—N1103.44 (13)
C1—C6—C5119.3 (4)O2—S1—C1108.64 (14)
C1—C6—H6120.4O1—S1—C1109.80 (15)
C5—C6—H6120.4N1—S1—C1104.10 (13)
C6—C1—C2—C3−1.7 (6)O3—C7—N1—S12.0 (4)
S1—C1—C2—C3179.2 (3)C8—C7—N1—S1−177.32 (19)
C1—C2—C3—C4−1.7 (7)C7—N1—S1—O249.4 (3)
C2—C3—C4—C54.2 (7)C7—N1—S1—O1178.9 (2)
C3—C4—C5—C6−3.3 (7)C7—N1—S1—C1−66.3 (3)
C2—C1—C6—C52.5 (6)C2—C1—S1—O2−15.1 (3)
S1—C1—C6—C5−178.3 (3)C6—C1—S1—O2165.7 (3)
C4—C5—C6—C10.0 (7)C2—C1—S1—O1−149.1 (3)
O3—C7—C8—Cl115.7 (4)C6—C1—S1—O131.7 (3)
N1—C7—C8—Cl1−164.9 (2)C2—C1—S1—N1100.7 (3)
O3—C7—C8—Cl2−104.2 (3)C6—C1—S1—N1−78.5 (3)
N1—C7—C8—Cl275.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.002.844 (3)166

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2284).

References

  • Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1492. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410. [PMC free article] [PubMed]
  • Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.
  • Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography