PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1517.
Published online 2008 July 16. doi:  10.1107/S1600536808021181
PMCID: PMC2962143

(3R,4S,5S)-4-Hydr­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]tetra­hydro­furan-2-one

Abstract

The title compound, C11H18O3, was synthesized to prove the relative configuration of the corresponding acyclic C1—C8 stereopentade. It crystallizes with two mol­ecules in the asymmetric unit, which show only slight differences. The mol­ecules are linked via O—H(...)O hydrogen bonds, resulting in two crystallographically independent chains of mol­ecules propagating in the a-axis direction. The absolute configuration was known from the synthesis.

Related literature

For related literature, see: Abraham, Körner & Hiersemann (2004 [triangle]); Abraham, Körner, Schwab & Hiersemann (2004 [triangle]); Corey & Snider (1972 [triangle]); Evans et al. (1981 [triangle], 1999 [triangle]); Körner & Hiersemann (2006 [triangle], 2007 [triangle]); Pollex & Hiersemann (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1517-scheme1.jpg

Experimental

Crystal data

  • C11H18O3
  • M r = 198.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1517-efi1.jpg
  • a = 6.2934 (13) Å
  • b = 16.411 (3) Å
  • c = 11.607 (2) Å
  • β = 95.46 (3)°
  • V = 1193.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 291 (1) K
  • 0.30 × 0.28 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 9263 measured reflections
  • 2268 independent reflections
  • 1228 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.080
  • S = 1.06
  • 2268 reflections
  • 262 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021181/hb2741sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021181/hb2741Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), was synthesized using a catalytic asymmetric Claisen rearrangement (Abraham et al., 2004a; Abraham et al. 2004b; Pollex & Hiersemann, 2005; Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), and an aldol addition under modified Evans conditions (Evans et al., 1981). In order to verify the relative configuration of the major diastereomer of the obtained aldol adduct (dr = 7/3), 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl)-4-isopropyloxazolidin-2-one, (II), a γ-lactone, (I), was prepared by removal of the silyl protecting group (Corey et al., 1972) and subsequent in situ lactonization. Fig. 1 depicts the structure of the isolated major diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the aldol addition (C3 R and C4 S), the diastereoselective reduction with K-Selectride (C5 S), and the catalytic asymmetric Claisen rearrangement (C2 S and C3 R) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

There are two molecules of (I) in the asymmetric unit (Figs. 1 and 2) with similar conformations. In the crystal, the molecules interact via O—H···O hydrogen bonds (Table 1) to form two independent chains, both propagating in [100].

Experimental

The title compound, (I), was synthesized from the corresponding anti-aldol adduct, (II), using tetrabutylammonium fluoride (TBAF) (Corey et al., 1972) for the removal of the silyl protecting group. The subsequent lactonization proceeded in situ.

TBAF (1 M in tetrahydrofuran, 0.82 ml, 3.0 eq) was added to a solution of the diastereomeric mixture of (II) (dr = 7/3, 120 mg, 0.27 mmol, 1.0 eq) in dry tetrahydrofuran (2 ml) at 273 K. The mixture was stirred at 273 K for 15 min and then at 298 K for 30 min. The reaction was quenched by the addition of saturated aqueous NaHCO3 solution. The phases were separated, and the aqueous phase was extracted with CH2Cl2. The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1) afforded (I) as a single diastereomer and additionally a mixture of (I) and the minor diastereomer with an overall yield of 72% (38.7 mg, 0.195 mmol) as colourless crystals. Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colourless cuboids: mp 412 K; Rf 0.33 (cyclohexane/ethyl acetate 2/1); 1H NMR (CDCl3, 400 MHz, δ): 0.84 (d, J = 7.0 Hz, 3H, (1)-H), 0.97 (d, J = 7.0 Hz, 3H, (3)'-H), 1.27 (d, J = 7.3 Hz, 3H, 3'-H), 1.85 (d, J = 4.8 Hz, 1H, –OH) overlapped by 1.89 (br. s), 2.19 (dqd, J = 10.6, 7.0, 3.0 Hz, 1H, (2)-H), 2.73 (dq, J = 4.8, 7.3 Hz, 1H, 3-H) overlapped by 2.62 - 2.72 (m, 1H, (3)-H), 4.07 (dd, J = 10.6, 3.0 Hz, 1H, 5-H), 4.37 (dd, J = 7.3, 4.8 Hz, 1H, 4-H), 5.03 (dd, 3J(E) = 17.0 Hz, 2J = 1.3 Hz, 1H, (5)-H), 5.04 (dd, 3J(Z) = 11.0 Hz, 2J = 1.3 Hz, 1H, (5)-H), 5.84 (ddd, 3J(E) = 17.0 Hz, 3J(Z) = 11.0 Hz, 3J = 6.3 Hz, 1H, (4)-H); 13C NMR (CDCl3, 100 MHz, δ): 8.4 (CH3), 9.7 (CH3), 12.3 (CH3), 35.7 (CH), 36.9 (CH), 42.7 (CH), 71.7 (CH), 84.3 (CH), 114.3 (CH2), 142.7 (CH), 178.4 (C); IR (cm-1): 3435(br, nm) (ν O—H, OH in H-bridges), 3085(w) 3020(w) (ν C—H, olefin), 2970(m) 2925(m) 2855(s) (νas,s C—H, CH2, CH3, CH), 1740(s) (ν C=O, lactone), 1640(w) (ν C=C), 1465(m) (δas C—H, CH3, CH2), 1380(m) (δs C—H, CH3); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.5; H, 9.3; [α]D20 +2.2 (c 0.472, CHCl3).

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The H atoms were geometrically placed (C—H = 0.93-0.98Å, O—H = 0.82Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.
: The molecular structure of molecule one of (I), with displacement ellipsoids for the non-hydrogen atoms shown at the 30% probability level.
Fig. 2.
: The molecular structure of molecule two of (I), with displacement ellipsoids for the non-hydrogen atoms shown at the 30% probability level.

Crystal data

C11H18O3F000 = 432
Mr = 198.25Dx = 1.103 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9263 reflections
a = 6.2934 (13) Åθ = 3.0–25.4º
b = 16.411 (3) ŵ = 0.08 mm1
c = 11.607 (2) ÅT = 291 (1) K
β = 95.46 (3)ºBlock, colourless
V = 1193.4 (4) Å30.30 × 0.28 × 0.20 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2268 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
Detector resolution: 19 vertical, 18 horizontal pixels mm-1θmax = 25.4º
T = 291(1) Kθmin = 3.0º
259 frames via ω–rotation (Δω=1%) and two times 120 s per frame (three sets at different κ–angles) scansh = −7→7
Absorption correction: nonek = −19→19
9263 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0276P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2268 reflectionsΔρmax = 0.14 e Å3
262 parametersΔρmin = −0.10 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2547 (2)0.96841 (13)0.63254 (16)0.0723 (6)
O20.1616 (3)0.91394 (14)0.55403 (19)0.0818 (7)
H20.27470.91600.52450.123*
O3−0.4523 (3)0.95694 (15)0.46477 (16)0.0804 (6)
C10.0831 (4)0.99366 (19)0.5670 (2)0.0699 (9)
H10.19791.03420.57000.084*
C2−0.0400 (4)0.9980 (2)0.6745 (2)0.0717 (9)
H2A−0.05121.05520.69710.086*
C3−0.2854 (5)0.9770 (2)0.5177 (3)0.0677 (8)
C4−0.0916 (4)1.0127 (2)0.4718 (2)0.0713 (9)
H4−0.11011.07200.47000.086*
C5−0.0562 (5)0.9858 (2)0.3503 (2)0.0963 (11)
H5A−0.02720.92840.35010.144*
H5B0.06291.01490.32460.144*
H5C−0.18180.99710.29920.144*
C60.0466 (4)0.9499 (2)0.7790 (2)0.0766 (9)
H60.06360.89340.75410.092*
C70.2689 (5)0.9825 (2)0.8203 (3)0.0999 (12)
H7A0.36680.96870.76470.150*
H7B0.31650.95850.89360.150*
H7C0.26281.04060.82830.150*
C8−0.1058 (5)0.9493 (3)0.8754 (3)0.0969 (12)
H8−0.24410.92990.83970.116*
C9−0.1446 (7)1.0344 (3)0.9243 (3)0.1352 (16)
H9A−0.24591.03060.98090.203*
H9B−0.19951.06980.86260.203*
H9C−0.01251.05600.95980.203*
C10−0.0295 (7)0.8869 (4)0.9651 (4)0.146 (2)
H100.00900.83780.93270.175*
C11−0.0089 (10)0.8863 (6)1.0604 (6)0.278 (5)
H11A−0.04280.93231.10170.333*
H11B0.04220.83981.09950.333*
O1'−0.6701 (3)0.71545 (13)0.46394 (18)0.0769 (6)
O2'−0.2446 (3)0.67928 (15)0.3828 (2)0.0935 (7)
H2'−0.13590.68680.35050.140*
O3'−0.8637 (4)0.71727 (16)0.29367 (18)0.0963 (8)
C1'−0.3349 (5)0.7549 (2)0.4080 (3)0.0777 (9)
H1'−0.22550.79740.42030.093*
C2'−0.4615 (4)0.7458 (2)0.5138 (3)0.0727 (9)
H2'1−0.48160.80000.54650.087*
C3'−0.7005 (5)0.7353 (2)0.3510 (3)0.0794 (10)
C4'−0.5091 (5)0.7794 (2)0.3145 (3)0.0839 (10)
H4'−0.53470.83790.32320.101*
C5'−0.4680 (6)0.7646 (3)0.1898 (3)0.1211 (15)
H5'1−0.34270.79400.17300.182*
H5'2−0.58830.78310.13960.182*
H5'3−0.44680.70740.17790.182*
C6'−0.3719 (4)0.6903 (2)0.6094 (3)0.0726 (9)
H6'−0.35150.63670.57490.087*
C7'−0.1534 (5)0.7211 (2)0.6567 (3)0.0986 (12)
H7'1−0.05660.71690.59780.148*
H7'2−0.10130.68880.72240.148*
H7'3−0.16420.77700.67970.148*
C8'−0.5233 (5)0.6788 (2)0.7046 (3)0.0773 (9)
H8'−0.66090.66230.66470.093*
C9'−0.5664 (6)0.7563 (3)0.7697 (3)0.1204 (14)
H9'1−0.43540.77600.80910.181*
H9'2−0.66640.74500.82520.181*
H9'3−0.62480.79680.71610.181*
C10'−0.4516 (6)0.6101 (3)0.7795 (4)0.1110 (13)
H10'−0.43280.56140.74080.133*
C11'−0.4126 (8)0.6067 (4)0.8851 (4)0.183 (3)
H11C−0.42760.65300.93000.220*
H11D−0.36790.55790.92030.220*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0470 (10)0.0854 (17)0.0864 (13)−0.0022 (11)0.0168 (9)0.0018 (13)
O20.0649 (13)0.0683 (17)0.1164 (16)0.0050 (11)0.0310 (12)0.0017 (13)
O30.0569 (12)0.0926 (18)0.0930 (13)−0.0018 (13)0.0134 (11)0.0007 (13)
C10.0543 (17)0.052 (2)0.106 (2)−0.0006 (16)0.0204 (16)−0.0009 (18)
C20.0513 (16)0.072 (3)0.094 (2)−0.0065 (16)0.0167 (15)−0.0091 (19)
C30.0549 (18)0.063 (2)0.088 (2)0.0086 (17)0.0190 (16)0.0012 (19)
C40.0609 (18)0.065 (2)0.090 (2)0.0004 (16)0.0210 (16)0.0089 (17)
C50.083 (2)0.112 (3)0.099 (2)−0.003 (2)0.0322 (17)0.004 (2)
C60.0509 (16)0.091 (3)0.0888 (19)−0.0027 (17)0.0115 (15)−0.007 (2)
C70.0603 (18)0.125 (4)0.115 (2)−0.008 (2)0.0097 (16)−0.012 (2)
C80.0648 (19)0.140 (4)0.087 (2)−0.003 (2)0.0156 (18)−0.007 (3)
C90.111 (3)0.173 (5)0.128 (3)0.024 (3)0.047 (3)−0.021 (3)
C100.106 (3)0.249 (7)0.086 (3)0.007 (4)0.027 (3)0.030 (4)
C110.147 (5)0.476 (16)0.222 (7)0.051 (7)0.075 (6)0.165 (9)
O1'0.0496 (11)0.0897 (18)0.0938 (14)−0.0022 (11)0.0186 (10)0.0066 (12)
O2'0.0718 (14)0.0719 (18)0.1435 (19)0.0044 (13)0.0446 (13)0.0045 (15)
O3'0.0646 (14)0.125 (2)0.1002 (15)−0.0110 (15)0.0131 (12)0.0065 (14)
C1'0.0634 (19)0.056 (2)0.117 (2)−0.0012 (17)0.0241 (19)0.003 (2)
C2'0.0534 (18)0.060 (2)0.106 (2)−0.0041 (16)0.0122 (16)−0.003 (2)
C3'0.060 (2)0.086 (3)0.095 (2)0.0041 (19)0.0236 (18)0.006 (2)
C4'0.073 (2)0.069 (3)0.112 (2)−0.0002 (18)0.0255 (19)0.011 (2)
C5'0.103 (3)0.153 (4)0.114 (3)−0.008 (3)0.045 (2)0.016 (3)
C6'0.0542 (17)0.064 (2)0.101 (2)0.0017 (16)0.0160 (16)−0.005 (2)
C7'0.0560 (18)0.097 (3)0.142 (3)−0.0047 (19)0.0043 (18)−0.004 (2)
C8'0.0616 (18)0.079 (3)0.092 (2)0.0030 (18)0.0084 (16)0.002 (2)
C9'0.107 (3)0.128 (4)0.128 (3)0.021 (3)0.019 (2)−0.026 (3)
C10'0.078 (2)0.149 (4)0.108 (3)0.001 (3)0.020 (2)0.015 (3)
C11'0.134 (4)0.252 (7)0.161 (4)0.028 (4)−0.001 (4)0.069 (5)

Geometric parameters (Å, °)

O1—C31.336 (3)O1'—C3'1.347 (3)
O1—C21.474 (3)O1'—C2'1.470 (3)
O2—C11.411 (3)O2'—C1'1.408 (4)
O2—H20.8200O2'—H2'0.8200
O3—C31.211 (3)O3'—C3'1.206 (3)
C1—C41.515 (4)C1'—C4'1.521 (4)
C1—C21.532 (4)C1'—C2'1.533 (4)
C1—H10.9800C1'—H1'0.9800
C2—C61.504 (4)C2'—C6'1.503 (4)
C2—H2A0.9800C2'—H2'10.9800
C3—C41.496 (4)C3'—C4'1.500 (5)
C4—C51.515 (4)C4'—C5'1.514 (4)
C4—H40.9800C4'—H4'0.9800
C5—H5A0.9600C5'—H5'10.9600
C5—H5B0.9600C5'—H5'20.9600
C5—H5C0.9600C5'—H5'30.9600
C6—C71.531 (4)C6'—C7'1.517 (4)
C6—C81.542 (4)C6'—C8'1.538 (4)
C6—H60.9800C6'—H6'0.9800
C7—H7A0.9600C7'—H7'10.9600
C7—H7B0.9600C7'—H7'20.9600
C7—H7C0.9600C7'—H7'30.9600
C8—C101.506 (7)C8'—C10'1.469 (6)
C8—C91.536 (6)C8'—C9'1.516 (5)
C8—H80.9800C8'—H8'0.9800
C9—H9A0.9600C9'—H9'10.9600
C9—H9B0.9600C9'—H9'20.9600
C9—H9C0.9600C9'—H9'30.9600
C10—C111.102 (6)C10'—C11'1.228 (5)
C10—H100.9300C10'—H10'0.9300
C11—H11A0.9300C11'—H11C0.9300
C11—H11B0.9300C11'—H11D0.9300
C3—O1—C2109.6 (2)C3'—O1'—C2'109.9 (2)
C1—O2—H2109.5C1'—O2'—H2'109.5
O2—C1—C4110.5 (3)O2'—C1'—C4'111.2 (3)
O2—C1—C2109.8 (2)O2'—C1'—C2'109.3 (3)
C4—C1—C2101.3 (2)C4'—C1'—C2'101.7 (2)
O2—C1—H1111.6O2'—C1'—H1'111.4
C4—C1—H1111.6C4'—C1'—H1'111.4
C2—C1—H1111.6C2'—C1'—H1'111.4
O1—C2—C6110.1 (2)O1'—C2'—C6'110.1 (2)
O1—C2—C1103.6 (2)O1'—C2'—C1'103.3 (2)
C6—C2—C1117.4 (2)C6'—C2'—C1'117.6 (2)
O1—C2—H2A108.5O1'—C2'—H2'1108.5
C6—C2—H2A108.5C6'—C2'—H2'1108.5
C1—C2—H2A108.5C1'—C2'—H2'1108.5
O3—C3—O1120.9 (2)O3'—C3'—O1'120.8 (3)
O3—C3—C4128.5 (3)O3'—C3'—C4'128.8 (3)
O1—C3—C4110.6 (3)O1'—C3'—C4'110.4 (3)
C3—C4—C5114.5 (3)C3'—C4'—C5'114.1 (3)
C3—C4—C1102.7 (2)C3'—C4'—C1'102.4 (3)
C5—C4—C1117.3 (2)C5'—C4'—C1'117.5 (3)
C3—C4—H4107.3C3'—C4'—H4'107.4
C5—C4—H4107.3C5'—C4'—H4'107.4
C1—C4—H4107.3C1'—C4'—H4'107.4
C4—C5—H5A109.5C4'—C5'—H5'1109.5
C4—C5—H5B109.5C4'—C5'—H5'2109.5
H5A—C5—H5B109.5H5'1—C5'—H5'2109.5
C4—C5—H5C109.5C4'—C5'—H5'3109.5
H5A—C5—H5C109.5H5'1—C5'—H5'3109.5
H5B—C5—H5C109.5H5'2—C5'—H5'3109.5
C2—C6—C7108.6 (3)C2'—C6'—C7'109.2 (3)
C2—C6—C8112.7 (3)C2'—C6'—C8'113.0 (2)
C7—C6—C8112.9 (2)C7'—C6'—C8'112.5 (3)
C2—C6—H6107.5C2'—C6'—H6'107.3
C7—C6—H6107.5C7'—C6'—H6'107.3
C8—C6—H6107.5C8'—C6'—H6'107.3
C6—C7—H7A109.5C6'—C7'—H7'1109.5
C6—C7—H7B109.5C6'—C7'—H7'2109.5
H7A—C7—H7B109.5H7'1—C7'—H7'2109.5
C6—C7—H7C109.5C6'—C7'—H7'3109.5
H7A—C7—H7C109.5H7'1—C7'—H7'3109.5
H7B—C7—H7C109.5H7'2—C7'—H7'3109.5
C10—C8—C9114.5 (3)C10'—C8'—C9'114.0 (3)
C10—C8—C6109.1 (3)C10'—C8'—C6'110.1 (3)
C9—C8—C6113.1 (3)C9'—C8'—C6'114.1 (3)
C10—C8—H8106.5C10'—C8'—H8'106.0
C9—C8—H8106.5C9'—C8'—H8'106.0
C6—C8—H8106.5C6'—C8'—H8'106.0
C8—C9—H9A109.5C8'—C9'—H9'1109.5
C8—C9—H9B109.5C8'—C9'—H9'2109.5
H9A—C9—H9B109.5H9'1—C9'—H9'2109.5
C8—C9—H9C109.5C8'—C9'—H9'3109.5
H9A—C9—H9C109.5H9'1—C9'—H9'3109.5
H9B—C9—H9C109.5H9'2—C9'—H9'3109.5
C11—C10—C8134.4 (8)C11'—C10'—C8'130.3 (5)
C11—C10—H10112.8C11'—C10'—H10'114.9
C8—C10—H10112.8C8'—C10'—H10'114.9
C10—C11—H11A120.0C10'—C11'—H11C120.0
C10—C11—H11B120.0C10'—C11'—H11D120.0
H11A—C11—H11B120.0H11C—C11'—H11D120.0
C3—O1—C2—C6−148.1 (3)C3'—O1'—C2'—C6'−149.0 (3)
C3—O1—C2—C1−21.8 (3)C3'—O1'—C2'—C1'−22.6 (3)
O2—C1—C2—O1−83.7 (3)O2'—C1'—C2'—O1'−84.1 (3)
C4—C1—C2—O133.2 (3)C4'—C1'—C2'—O1'33.5 (3)
O2—C1—C2—C637.9 (3)O2'—C1'—C2'—C6'37.4 (4)
C4—C1—C2—C6154.7 (3)C4'—C1'—C2'—C6'155.1 (3)
C2—O1—C3—O3−179.6 (3)C2'—O1'—C3'—O3'−178.9 (3)
C2—O1—C3—C40.5 (3)C2'—O1'—C3'—C4'1.6 (3)
O3—C3—C4—C5−30.6 (5)O3'—C3'—C4'—C5'−31.2 (6)
O1—C3—C4—C5149.3 (3)O1'—C3'—C4'—C5'148.3 (3)
O3—C3—C4—C1−158.8 (3)O3'—C3'—C4'—C1'−159.3 (4)
O1—C3—C4—C121.1 (3)O1'—C3'—C4'—C1'20.2 (4)
O2—C1—C4—C384.0 (3)O2'—C1'—C4'—C3'84.1 (3)
C2—C1—C4—C3−32.4 (3)C2'—C1'—C4'—C3'−32.2 (3)
O2—C1—C4—C5−42.5 (4)O2'—C1'—C4'—C5'−41.7 (4)
C2—C1—C4—C5−158.9 (3)C2'—C1'—C4'—C5'−158.0 (3)
O1—C2—C6—C7−179.8 (2)O1'—C2'—C6'—C7'178.0 (2)
C1—C2—C6—C762.1 (4)C1'—C2'—C6'—C7'60.1 (4)
O1—C2—C6—C8−54.0 (4)O1'—C2'—C6'—C8'−56.0 (4)
C1—C2—C6—C8−172.1 (3)C1'—C2'—C6'—C8'−173.9 (3)
C2—C6—C8—C10168.6 (3)C2'—C6'—C8'—C10'166.5 (3)
C7—C6—C8—C10−67.9 (5)C7'—C6'—C8'—C10'−69.3 (4)
C2—C6—C8—C9−62.7 (4)C2'—C6'—C8'—C9'−63.8 (4)
C7—C6—C8—C960.8 (4)C7'—C6'—C8'—C9'60.4 (4)
C9—C8—C10—C117.2 (9)C9'—C8'—C10'—C11'−3.6 (7)
C6—C8—C10—C11135.1 (8)C6'—C8'—C10'—C11'126.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.822.032.821 (3)163
O2'—H2'···O3'i0.821.962.771 (3)171

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2741).

References

  • Abraham, L., Körner, M. & Hiersemann, M. (2004). Tetrahedron Lett.45, 3647–3650.
  • Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal.346, 1281–1294.
  • Corey, E. J. & Snider, B. B. (1972). J. Am. Chem. Soc.94, 2549–2550. [PubMed]
  • Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc.103, 2127–2129.
  • Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc.121, 7559–7573.
  • Körner, M. & Hiersemann, M. (2006). Synlett, pp. 121–123.
  • Körner, M. & Hiersemann, M. (2007). Org. Lett.9, 4979–4982. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326, New York: Academic Press.
  • Pollex, A. & Hiersemann, M. (2005). Org. Lett.7, 5705–5708. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography