PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1516.
Published online 2008 July 16. doi:  10.1107/S1600536808021442
PMCID: PMC2962142

N-(Thia­zol-2-yl)acetamide

Abstract

The title compound, C5H6N2OS, was synthesized from acetyl chloride and 2-amino­thia­zole in dry acetone. The asymmetric unit contains two mol­ecules. The crystal structure is stabilized by N—H(...)N and C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Raman et al. (2000 [triangle]); Wang et al. (2008 [triangle]); Yunus et al. (2007 [triangle] 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1516-scheme1.jpg

Experimental

Crystal data

  • C5H6N2OS
  • M r = 142.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1516-efi1.jpg
  • a = 16.0650 (12) Å
  • b = 11.3337 (8) Å
  • c = 7.0670 (5) Å
  • β = 101.908 (10)°
  • V = 1259.04 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 173 (2) K
  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.830, T max = 1.000 (expected range = 0.757–0.911)
  • 7429 measured reflections
  • 3024 independent reflections
  • 2602 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.104
  • S = 1.05
  • 3024 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021442/wk2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021442/wk2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

The thiazole ring and its derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgesic and antipyretic (Raman et al., 2000). On the other hand amide compounds have extensive applications in the pharmaceutical industry (Wang et al., 2008). As a part of our research the title compound (I) has been synthesized and its crystal structure is reported herein (Yunus et al., 2007; 2008).

The title compound (I) crystallizes in a monoclinic space group with two molecules in asymmetric unit. All the bond lengths and angles are within the normal ranges. The molecules are stabilized by intermolecular hydrogen bonds N—H···N, and C—H···O (Table 1, Fig 2).

Experimental

A mixture of acetyl chloride (26 mmol) and 2-aminothiazole (26 mmol) was refluxed in dry acetone (60 ml) for two hours. After cooling, the mixture was poured into acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate.

Figures

Fig. 1.
The molecular structure of (I) with ellipsoids drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I) showing N—H···N hydrogen bonding.

Crystal data

C5H6N2OSF000 = 592
Mr = 142.18Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7429 reflections
a = 16.0650 (12) Åθ = 2.6–28.3º
b = 11.3337 (8) ŵ = 0.42 mm1
c = 7.0670 (5) ÅT = 173 (2) K
β = 101.908 (10)ºBlock, pale yellow
V = 1259.04 (16) Å30.30 × 0.26 × 0.22 mm
Z = 8

Data collection

Bruker SMART1000 CCD diffractometer3024 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 173(2) Kθmax = 28.3º
ω and [var phi] scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −21→18
Tmin = 0.830, Tmax = 1.000k = −15→12
7429 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5928P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3024 reflectionsΔρmax = 0.44 e Å3
163 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.22544 (11)0.26865 (16)0.3481 (3)0.0287 (4)
H1A0.20730.19650.28430.034*
C20.17369 (11)0.35988 (15)0.3648 (3)0.0276 (4)
H2A0.11430.35750.31270.033*
C30.29472 (10)0.43764 (14)0.5196 (2)0.0223 (3)
C40.43344 (10)0.50546 (16)0.6861 (3)0.0281 (4)
C50.48077 (11)0.61150 (18)0.7800 (3)0.0362 (4)
H5A0.54070.59100.82720.054*
H5B0.45600.63720.88870.054*
H5C0.47650.67550.68520.054*
C60.28449 (12)0.53644 (16)1.0659 (3)0.0313 (4)
H6A0.30850.45981.08670.038*
C70.32581 (11)0.63693 (16)1.1264 (3)0.0290 (4)
H7A0.38310.63741.19600.035*
C80.20282 (10)0.71411 (14)0.9848 (2)0.0227 (3)
C90.06151 (10)0.78011 (16)0.8300 (3)0.0277 (4)
C100.00676 (12)0.88668 (17)0.7755 (3)0.0381 (4)
H10A−0.05060.86180.71160.057*
H10B0.03120.93610.68720.057*
H10C0.00380.93180.89220.057*
N10.21293 (9)0.45737 (13)0.4630 (2)0.0254 (3)
N20.34869 (8)0.52329 (13)0.6143 (2)0.0252 (3)
H2B0.32730.59340.62930.030*
N30.27956 (8)0.73976 (13)1.0806 (2)0.0255 (3)
N40.14391 (8)0.80175 (12)0.9218 (2)0.0246 (3)
H4A0.16020.87560.94180.030*
O10.46679 (8)0.40975 (12)0.6735 (2)0.0386 (3)
O20.03563 (8)0.67920 (12)0.7966 (2)0.0380 (3)
S10.32900 (3)0.30062 (4)0.45821 (7)0.02647 (13)
S20.18167 (3)0.56560 (4)0.94536 (7)0.02913 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0280 (8)0.0239 (8)0.0334 (9)−0.0035 (6)0.0047 (7)−0.0030 (7)
C20.0213 (8)0.0266 (8)0.0329 (9)−0.0019 (6)0.0008 (6)−0.0002 (7)
C30.0200 (7)0.0211 (7)0.0250 (8)0.0019 (6)0.0030 (6)0.0021 (6)
C40.0200 (8)0.0303 (9)0.0322 (9)0.0014 (6)0.0016 (7)0.0026 (7)
C50.0232 (8)0.0368 (10)0.0448 (11)−0.0038 (7)−0.0015 (7)−0.0044 (8)
C60.0300 (9)0.0250 (8)0.0376 (10)0.0057 (7)0.0038 (7)0.0037 (7)
C70.0237 (8)0.0296 (9)0.0321 (9)0.0033 (7)0.0024 (7)0.0052 (7)
C80.0217 (7)0.0215 (7)0.0247 (8)−0.0020 (6)0.0044 (6)0.0014 (6)
C90.0184 (7)0.0280 (9)0.0352 (9)−0.0010 (6)0.0021 (6)0.0005 (7)
C100.0240 (8)0.0327 (10)0.0540 (12)0.0040 (7)−0.0004 (8)0.0011 (9)
N10.0185 (6)0.0249 (7)0.0314 (8)0.0000 (5)0.0016 (5)−0.0005 (6)
N20.0184 (6)0.0222 (7)0.0329 (8)0.0005 (5)0.0005 (5)−0.0019 (6)
N30.0200 (6)0.0242 (7)0.0305 (8)−0.0007 (5)0.0009 (5)0.0032 (6)
N40.0182 (6)0.0195 (7)0.0342 (8)−0.0011 (5)0.0008 (5)−0.0003 (5)
O10.0232 (6)0.0317 (7)0.0557 (9)0.0058 (5)−0.0039 (6)−0.0007 (6)
O20.0220 (6)0.0276 (7)0.0590 (9)−0.0047 (5)−0.0042 (6)−0.0023 (6)
S10.0229 (2)0.0210 (2)0.0349 (2)0.00316 (14)0.00479 (16)−0.00010 (15)
S20.0261 (2)0.0205 (2)0.0385 (3)−0.00185 (15)0.00132 (17)−0.00081 (16)

Geometric parameters (Å, °)

C1—C21.347 (2)C6—S21.7271 (19)
C1—S11.7236 (18)C6—H6A0.9500
C1—H1A0.9500C7—N31.384 (2)
C2—N11.385 (2)C7—H7A0.9500
C2—H2A0.9500C8—N31.311 (2)
C3—N11.311 (2)C8—N41.381 (2)
C3—N21.379 (2)C8—S21.7284 (17)
C3—S11.7326 (16)C9—O21.223 (2)
C4—O11.221 (2)C9—N41.371 (2)
C4—N21.366 (2)C9—C101.497 (2)
C4—C51.502 (3)C10—H10A0.9800
C5—H5A0.9800C10—H10B0.9800
C5—H5B0.9800C10—H10C0.9800
C5—H5C0.9800N2—H2B0.8800
C6—C71.343 (3)N4—H4A0.8800
C2—C1—S1110.78 (13)N3—C7—H7A122.2
C2—C1—H1A124.6N3—C8—N4121.06 (15)
S1—C1—H1A124.6N3—C8—S2115.59 (12)
C1—C2—N1115.51 (15)N4—C8—S2123.35 (12)
C1—C2—H2A122.2O2—C9—N4121.01 (16)
N1—C2—H2A122.2O2—C9—C10123.13 (16)
N1—C3—N2121.20 (15)N4—C9—C10115.86 (15)
N1—C3—S1115.26 (12)C9—C10—H10A109.5
N2—C3—S1123.49 (12)C9—C10—H10B109.5
O1—C4—N2121.52 (16)H10A—C10—H10B109.5
O1—C4—C5123.60 (15)C9—C10—H10C109.5
N2—C4—C5114.88 (15)H10A—C10—H10C109.5
C4—C5—H5A109.5H10B—C10—H10C109.5
C4—C5—H5B109.5C3—N1—C2109.91 (14)
H5A—C5—H5B109.5C4—N2—C3123.68 (15)
C4—C5—H5C109.5C4—N2—H2B118.2
H5A—C5—H5C109.5C3—N2—H2B118.2
H5B—C5—H5C109.5C8—N3—C7109.65 (15)
C7—C6—S2110.75 (13)C9—N4—C8123.68 (14)
C7—C6—H6A124.6C9—N4—H4A118.2
S2—C6—H6A124.6C8—N4—H4A118.2
C6—C7—N3115.69 (15)C1—S1—C388.54 (8)
C6—C7—H7A122.2C6—S2—C888.31 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.882.042.897 (2)163
N4—H4A···N1ii0.882.072.938 (2)171
C2—H2A···O2iii0.952.413.350 (2)171
C7—H7A···O1iv0.952.463.382 (2)165

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2088).

References

  • Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Raman, R., Razavi, H. & Kelly, J. W. (2000). Org. Lett.2, 3289–3292. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun.38, 1028–1035.
  • Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.
  • Yunus, U., Tahir, M. K., Bhatti, M. H. & Wong, W.-Y. (2008). Acta Cryst. E64, o722. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography