PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1512.
Published online 2008 July 16. doi:  10.1107/S1600536808021570
PMCID: PMC2962138

(2Z,3Z)-Quinoxaline-2,3(1H,4H)-dione dioxime

Abstract

The asymmetric unit of the title compound, C8H8N4O2, contains one half-mol­ecule; a twofold rotation axis bisects the molecule. An intra­molecular N—H(...)O hydrogen bond results in the formation of a five-membered ring, which displays an envelope conformation. In the crystal structure, inter­molecular O—H(...)N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Kakanejadifard, Niknam & Zabardasti (2007 [triangle]); Kakanejadifard, Saniei et al. (2007 [triangle]); Kakanejadifard & Niknam (2006 [triangle]); For general background, see: Jones et al. (1961 [triangle]); Schrauzer & Kohnle (1964 [triangle]); Yari et al. (2006 [triangle]); Hashemi et al. (2006 [triangle]); Ghiasvand et al. (2004 [triangle], 2005 [triangle]); Kakanejadifard, Niknam, Ranjbar et al. (2007 [triangle]); Gok & Kantekin (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1512-scheme1.jpg

Experimental

Crystal data

  • C8H8N4O2
  • M r = 192.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1512-efi3.jpg
  • a = 9.831 (2) Å
  • b = 13.609 (3) Å
  • c = 24.344 (5) Å
  • V = 3256.9 (11) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 120 (2) K
  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: none
  • 7925 measured reflections
  • 983 independent reflections
  • 708 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.118
  • S = 1.01
  • 983 reflections
  • 67 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021570/hk2493sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021570/hk2493Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Research Grant Council of Lorestan University for financial support.

supplementary crystallographic information

Comment

Recently, we have reported the syntheses and chemical behaviours of some vic-dioximes. In our investigations, the reactions of amines with dichloro- glyoxime or cyanogendi-N-oxide resulted in various symmetrically substituted diaminoglyoxime derivatives, in which some of them were quite suitable to act, as donor species, towards some transition metal ions (Kakanejadifard, Niknam & Zabardasti, 2007; Kakanejadifard, Saniei et al., 2007; Kakanejadifard & Niknam, 2006). Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones et al., 1961; Schrauzer & Kohnle, 1964;Yari et al., 2006; Hashemi et al., 2006; Ghiasvand et al., 2004, 2005; Kakanejadifard, Niknam, Ranjbar et al., 2007). vic-Dioximes, containing mildly acidic hydroxyl groups and slightly basic nitrogen atoms, are amphoteric and their transition metal complexes have been widely investigated as analytical reagents (Gok & Kantekin, 1997). We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one-half molecule (Fig. 1). The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring: (O1/N1/N2/C1/H2A), having envelope conformation, with H2A atom displaced by -0.132 Å from the plane of the other ring atoms.

In the crystal structure, intermolecular O-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, a solution of Na2CO3 (0.2 g, 1.9 mmol) in MeCN (30 ml) was added to a magnetically stirred solution of dicholoroglyoxime (1.57 g, 10 mmol) in MeCN (20 ml) and a solution of 1,2-phenylendiamine (1.08 g, 10 mmol) at 278 K. After 2 h stirring at room temperature, the mixture was filtered and the brown precipitate was washed with cold MeCN. It was recrystallized from EtOH (70% aq) in one week (yield; 93.0%, m.p. 512 K).

Refinement

H1 atom (for OH) was located in difference syntheses and refined [O-H = 0.852 (13) Å, Uiso(H) = 0.039 Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 5/4 - x, 1/4 - y, z].
Fig. 2.
A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8N4O2F000 = 1600
Mr = 192.18Dx = 1.568 Mg m3
Orthorhombic, FdddMo Kα radiation λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 744 reflections
a = 9.831 (2) Åθ = 3–30º
b = 13.609 (3) ŵ = 0.12 mm1
c = 24.344 (5) ÅT = 120 (2) K
V = 3256.9 (11) Å3Prism, light-brown
Z = 160.4 × 0.2 × 0.2 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer708 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Monochromator: graphiteθmax = 28.0º
T = 120(2) Kθmin = 2.7º
[var phi] and ω scansh = −12→12
Absorption correction: nonek = −17→17
7925 measured reflectionsl = −32→31
983 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.005P)2 + 25P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
983 reflectionsΔρmax = 0.43 e Å3
67 parametersΔρmin = −0.25 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.47468 (17)−0.04564 (12)0.43944 (6)0.0324 (4)
H10.454 (3)−0.0611 (18)0.4723 (4)0.039*
N10.54273 (19)0.04548 (13)0.44726 (7)0.0261 (4)
N20.5691 (2)0.03307 (14)0.35156 (7)0.0308 (5)
H2A0.5385−0.02610.35130.037*
C10.5867 (2)0.07818 (15)0.40084 (8)0.0242 (4)
C20.5981 (2)0.07776 (16)0.30119 (8)0.0268 (5)
C30.5745 (2)0.03025 (19)0.25164 (9)0.0358 (6)
H3A0.5413−0.03370.25140.043*
C40.6000 (3)0.0776 (2)0.20291 (9)0.0412 (6)
H4A0.58350.04570.16980.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0423 (10)0.0304 (8)0.0244 (7)−0.0098 (7)0.0009 (7)0.0025 (7)
N10.0314 (9)0.0243 (9)0.0226 (8)−0.0053 (8)0.0002 (7)0.0004 (7)
N20.0447 (11)0.0279 (9)0.0198 (8)−0.0126 (8)0.0022 (8)−0.0015 (7)
C10.0282 (11)0.0261 (10)0.0184 (9)−0.0014 (9)−0.0009 (8)−0.0002 (8)
C20.0282 (11)0.0334 (11)0.0187 (9)−0.0055 (9)0.0016 (8)−0.0002 (8)
C30.0422 (13)0.0422 (13)0.0230 (10)−0.0154 (11)0.0041 (10)−0.0059 (10)
C40.0440 (14)0.0596 (17)0.0199 (10)−0.0188 (13)0.0004 (10)−0.0054 (10)

Geometric parameters (Å, °)

O1—H10.852 (13)C2—C2i1.390 (4)
N1—C11.289 (3)C2—C31.388 (3)
N1—O11.422 (2)C3—C41.373 (3)
N2—C11.359 (2)C3—H3A0.9300
N2—C21.398 (3)C4—C4i1.380 (5)
N2—H2A0.8600C4—H4A0.9300
C1—C1i1.481 (4)
N1—O1—H1101.8 (17)C3—C2—N2121.7 (2)
C1—N1—O1109.96 (16)C2i—C2—N2118.68 (11)
C1—N2—C2123.50 (18)C4—C3—C2120.1 (2)
C1—N2—H2A118.3C4—C3—H3A120.0
C2—N2—H2A118.3C2—C3—H3A120.0
N1—C1—N2125.13 (19)C3—C4—C4i120.25 (14)
N1—C1—C1i117.89 (12)C3—C4—H4A119.9
N2—C1—C1i116.98 (12)C4i—C4—H4A119.9
C3—C2—C2i119.62 (13)
C1—N2—C2—C3−177.8 (2)C2—N2—C1—C1i−11.4 (4)
C1—N2—C2—C2i2.2 (4)C2i—C2—C3—C4−2.1 (4)
O1—N1—C1—N20.8 (3)N2—C2—C3—C4177.9 (2)
O1—N1—C1—C1i−178.7 (2)C2—C3—C4—C4i0.4 (5)
C2—N2—C1—N1169.1 (2)

Symmetry codes: (i) −x+5/4, −y+1/4, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.852 (13)1.971 (10)2.763 (2)154
N2—H2A···O10.862.252.566 (3)102

Symmetry codes: (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2493).

References

  • Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287–292. [PubMed]
  • Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc.26, 781–785.
  • Gok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413–2420.
  • Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci.21, 1297–1301. [PubMed]
  • Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem.49, 62–66.
  • Kakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem.80, 1645–1649.
  • Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun.37, 2753–2756.
  • Kakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem.60, 677–681.
  • Kakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem.44, 717–718.
  • Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber 97, 3056–3063.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167–173.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography