PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1509.
Published online 2008 July 16. doi:  10.1107/S1600536808021636
PMCID: PMC2962136

4-[(E)-4-Bromo­benzyl­ideneamino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title mol­ecule, C10H9BrN4S, the dihedral angle between the triazole and benzene rings is 12.32 (19)°. An intra­molecular C—H(...)S hydrogen bond generates an S(6) ring motif. In the crystal packing, centrosymmetrically related mol­ecules are linked into a dimer by N—H(...)S hydrogen bonds, and the dimers are linked into a chain running along [1An external file that holds a picture, illustration, etc.
Object name is e-64-o1509-efi1.jpg1] by Br(...)N short contacts [3.187 (3) Å]. The crystal packing is further strengthened by π–π inter­actions involving the triazole ring [centroid–centroid distance = 3.322 (2) Å].

Related literature

For the pharmacological activity of triazole compounds, see: Bekircan et al. (2006 [triangle]); Brandt et al. (2007 [triangle]); Holla et al. (1996 [triangle], 2002 [triangle]); Yale et al. (1966 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1509-scheme1.jpg

Experimental

Crystal data

  • C10H9BrN4S
  • M r = 297.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1509-efi2.jpg
  • a = 6.9239 (5) Å
  • b = 7.6072 (5) Å
  • c = 11.5982 (8) Å
  • α = 82.453 (5)°
  • β = 88.339 (5)°
  • γ = 68.204 (4)°
  • V = 562.18 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.82 mm−1
  • T = 100.0 (1) K
  • 0.32 × 0.31 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.265, T max = 0.629
  • 13535 measured reflections
  • 3252 independent reflections
  • 2538 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.121
  • S = 1.09
  • 3252 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 1.20 e Å−3
  • Δρmin = −1.50 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021636/ci2629sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021636/ci2629Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Various 1,2,4-triazole derivatives are found to be associated with diverse pharmacological activity (Holla et al., 1996,2002). Schiff bases of 1,2,4-triazoles find diverse applications and extensive biological activity. Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4 triazoles show antiinflammatory, analgesic, antimicrobial and antidepressant activities (Yale et al., 1966; Bekircan et al., 2006). The incorporation of the 1,2,4-triazole unit into Schiff-base macrocycles is of considerable current interest as complexes of 1,2,4-triazoles are being developed for potential use in applications such as magnetic materials and photochemically driven molecular devices (Brandt et al., 2007). These applications prompted us to synthesize a novel Schiff base, derived from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4- triazole-3-thione with 4-bromo benzaldehyde.

In the title compound (Fig.1), the bond lengths and angles are found to have normal values (Allen et al., 1987). The dihedral angle between the triazole ring (N2/C8/N3/N4/C9) and the benzene ring (C1-C6) is 12.32 (19)°, indicating that they are slightly twisted from each other. An intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing, centrosymmetrically related molecules are linked into a dimer by N—H···S hydrogen bonds (Table 1). The dimers are linked into a chain running along the [1 1 1] by Br1···N4(1+x, -1+y, 1+z) short contacts [3.187 (3) Å]. The crystal packing is further strengthened by π-π interactions between the N2/C8/N3/N4/C9 (centroid Cg1) rings of the molecules at (x, y, z) and (1-x, 1-y, z) [centroid-centroid distance = 3.322 (2) Å].

Experimental

A mixture of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 2 drops of concentrated H2SO4 was refluxed for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 %A and N-H = 0.87 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds and Br···N short contacts are shown as dashed lines.

Crystal data

C10H9BrN4SZ = 2
Mr = 297.18F000 = 296
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.9239 (5) ÅCell parameters from 5175 reflections
b = 7.6072 (5) Åθ = 2.9–33.2º
c = 11.5982 (8) ŵ = 3.82 mm1
α = 82.453 (5)ºT = 100.0 (1) K
β = 88.339 (5)ºPlate, colourless
γ = 68.204 (4)º0.32 × 0.31 × 0.12 mm
V = 562.18 (7) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3252 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.059
T = 100.0(1) Kθmax = 30.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −9→9
Tmin = 0.265, Tmax = 0.629k = −10→10
13535 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121  w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1826P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3252 reflectionsΔρmax = 1.20 e Å3
146 parametersΔρmin = −1.50 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.07281 (6)0.01690 (5)0.76969 (3)0.02379 (13)
S10.13495 (15)0.36883 (13)0.17836 (8)0.0247 (2)
N10.5353 (5)0.4917 (4)0.2620 (2)0.0212 (6)
N20.4008 (5)0.5702 (4)0.1661 (2)0.0201 (6)
N30.1919 (5)0.6408 (4)0.0225 (3)0.0243 (6)
N40.3110 (5)0.7506 (4)−0.0027 (3)0.0236 (6)
C10.8184 (6)0.3339 (5)0.4542 (3)0.0237 (7)
H1A0.85340.41210.39570.028*
C20.9486 (6)0.2514 (5)0.5516 (3)0.0246 (7)
H2A1.06980.27510.55900.029*
C30.8955 (6)0.1335 (5)0.6374 (3)0.0214 (7)
C40.7153 (6)0.0956 (5)0.6288 (3)0.0230 (7)
H4A0.68300.01400.68620.028*
C50.5843 (6)0.1829 (5)0.5321 (3)0.0224 (7)
H5A0.46060.16260.52650.027*
C60.6348 (5)0.2997 (5)0.4439 (3)0.0199 (7)
C70.4924 (5)0.3838 (5)0.3443 (3)0.0199 (7)
H7A0.37100.35920.34070.024*
C80.2417 (6)0.5275 (5)0.1234 (3)0.0217 (7)
C90.4376 (6)0.7049 (5)0.0860 (3)0.0211 (7)
C100.5990 (6)0.7828 (5)0.1022 (3)0.0249 (7)
H10A0.63350.83460.02800.037*
H10B0.72090.68280.13770.037*
H10C0.54780.88180.15140.037*
H1N30.11570.6542−0.03840.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0287 (2)0.02116 (18)0.01825 (18)−0.00691 (14)−0.00647 (13)0.00315 (12)
S10.0301 (5)0.0264 (4)0.0191 (4)−0.0150 (4)−0.0050 (3)0.0069 (3)
N10.0242 (15)0.0186 (13)0.0177 (14)−0.0058 (12)−0.0047 (11)0.0029 (11)
N20.0251 (14)0.0185 (13)0.0154 (13)−0.0085 (12)−0.0020 (11)0.0041 (10)
N30.0318 (16)0.0226 (14)0.0179 (14)−0.0120 (13)−0.0029 (12)0.0058 (11)
N40.0259 (15)0.0242 (15)0.0203 (14)−0.0109 (13)0.0003 (12)0.0040 (11)
C10.0278 (18)0.0222 (16)0.0194 (16)−0.0094 (14)0.0024 (14)0.0028 (13)
C20.0227 (17)0.0252 (17)0.0243 (18)−0.0076 (14)−0.0052 (14)−0.0009 (14)
C30.0253 (17)0.0167 (15)0.0164 (15)−0.0024 (13)−0.0035 (13)0.0022 (12)
C40.0307 (19)0.0178 (15)0.0188 (16)−0.0083 (14)0.0018 (14)0.0007 (12)
C50.0255 (17)0.0198 (16)0.0225 (17)−0.0100 (14)−0.0034 (14)0.0002 (13)
C60.0237 (16)0.0176 (15)0.0173 (15)−0.0074 (13)−0.0001 (13)0.0003 (12)
C70.0239 (16)0.0191 (15)0.0158 (15)−0.0079 (13)−0.0044 (13)0.0009 (12)
C80.0229 (16)0.0210 (16)0.0182 (16)−0.0057 (14)−0.0004 (13)0.0006 (12)
C90.0252 (17)0.0181 (15)0.0195 (16)−0.0088 (14)−0.0006 (13)0.0013 (12)
C100.0285 (18)0.0230 (17)0.0228 (17)−0.0116 (15)−0.0006 (14)0.0047 (13)

Geometric parameters (Å, °)

Br1—C31.895 (3)C2—C31.386 (5)
S1—C81.686 (4)C2—H2A0.93
N1—C71.278 (4)C3—C41.390 (5)
N1—N21.390 (4)C4—C51.392 (5)
N2—C81.380 (5)C4—H4A0.93
N2—C91.381 (4)C5—C61.390 (5)
N3—C81.331 (4)C5—H5A0.93
N3—N41.377 (4)C6—C71.455 (4)
N3—H1N30.87C7—H7A0.93
N4—C91.296 (5)C9—C101.473 (5)
C1—C21.391 (5)C10—H10A0.96
C1—C61.400 (5)C10—H10B0.96
C1—H1A0.93C10—H10C0.96
C7—N1—N2119.6 (3)C6—C5—H5A119.4
C8—N2—C9108.5 (3)C4—C5—H5A119.4
C8—N2—N1133.0 (3)C5—C6—C1119.2 (3)
C9—N2—N1118.1 (3)C5—C6—C7118.3 (3)
C8—N3—N4114.1 (3)C1—C6—C7122.5 (3)
C8—N3—H1N3137.0N1—C7—C6119.6 (3)
N4—N3—H1N3108.1N1—C7—H7A120.2
C9—N4—N3104.3 (3)C6—C7—H7A120.2
C2—C1—C6120.3 (3)N3—C8—N2102.7 (3)
C2—C1—H1A119.8N3—C8—S1126.6 (3)
C6—C1—H1A119.8N2—C8—S1130.6 (3)
C3—C2—C1119.2 (4)N4—C9—N2110.4 (3)
C3—C2—H2A120.4N4—C9—C10126.1 (3)
C1—C2—H2A120.4N2—C9—C10123.5 (3)
C2—C3—C4121.7 (3)C9—C10—H10A109.5
C2—C3—Br1119.8 (3)C9—C10—H10B109.5
C4—C3—Br1118.5 (3)H10A—C10—H10B109.5
C3—C4—C5118.4 (3)C9—C10—H10C109.5
C3—C4—H4A120.8H10A—C10—H10C109.5
C5—C4—H4A120.8H10B—C10—H10C109.5
C6—C5—C4121.2 (3)
C7—N1—N2—C8−16.6 (6)C5—C6—C7—N1−179.9 (3)
C7—N1—N2—C9171.9 (3)C1—C6—C7—N10.7 (5)
C8—N3—N4—C9−0.5 (4)N4—N3—C8—N20.9 (4)
C6—C1—C2—C30.7 (5)N4—N3—C8—S1−177.3 (3)
C1—C2—C3—C4−0.1 (5)C9—N2—C8—N3−1.0 (4)
C1—C2—C3—Br1179.1 (3)N1—N2—C8—N3−173.0 (3)
C2—C3—C4—C5−1.4 (5)C9—N2—C8—S1177.2 (3)
Br1—C3—C4—C5179.4 (3)N1—N2—C8—S15.1 (6)
C3—C4—C5—C62.3 (5)N3—N4—C9—N2−0.2 (4)
C4—C5—C6—C1−1.7 (5)N3—N4—C9—C10180.0 (3)
C4—C5—C6—C7179.0 (3)C8—N2—C9—N40.8 (4)
C2—C1—C6—C50.1 (5)N1—N2—C9—N4174.2 (3)
C2—C1—C6—C7179.5 (3)C8—N2—C9—C10−179.4 (3)
N2—N1—C7—C6179.2 (3)N1—N2—C9—C10−6.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.872.483.321 (4)164
C7—H7A···S10.932.503.223 (4)134

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2629).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem.19, 17–27.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793–799. [PubMed]
  • Holla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem.37, 511–517. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yale, H. L. & Piala, J. J. (1966). J. Med. Chem.9, 42–46. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography