PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1507.
Published online 2008 July 16. doi:  10.1107/S1600536808021417
PMCID: PMC2962134

(E)-2-Meth­oxy-4-(3-oxobut-1-en­yl)phenyl acetate

Abstract

The title compound, C13H14O4, belongs to the class of α,β-unsaturated ketones, which have potential bactericidal, fungicidal, anti­tumor and anti-inflammatory properties. The C atoms and attached H atoms of the ethenyl part of the title mol­ecule are disordered over two orientations with refined occupancies of 0.583 (7) and 0.417 (3). Mol­ecules are connected by two inter­molecular C—H(...)O inter­actions, forming a dimer with An external file that holds a picture, illustration, etc.
Object name is e-64-o1507-efi1.jpg symmetry.

Related literature

For related literature, see: Steiner et al. (1998 [triangle]); Kuo et al. (2005 [triangle]); Buszek et al. (2007 [triangle]); Yarishkin et al. (2008 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1507-scheme1.jpg

Experimental

Crystal data

  • C13H14O4
  • M r = 234.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1507-efi2.jpg
  • a = 6.2534 (5) Å
  • b = 7.5797 (5) Å
  • c = 13.9718 (8) Å
  • α = 96.611 (2)°
  • β = 91.487 (2)°
  • γ = 110.599 (2)°
  • V = 614.21 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 299 (2) K
  • 0.30 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.981, T max = 0.989
  • 3984 measured reflections
  • 2381 independent reflections
  • 1423 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.220
  • S = 1.10
  • 2381 reflections
  • 173 parameters
  • 14 restraints
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021417/fb2101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021417/fb2101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xiangfan University for financial support.

supplementary crystallographic information

Comment

The title compound belongs to α,β-unsaturated ketones having potential bactericidal, fungicidal, antitumor and antiinflammatory properties (Kuo et al., 2005; Yarishkin et al., 2008). Sythesis of α,β-unsaturated ketones is being extensively investigated (Buszek et al., 2007). The molecular structure is shown in Fig. 1. The molecules form dimers by a pair of intermolecular C—H···O hydrogen bonds (Steiner et al., 1998) forming a graph-set R22(14) (Etter et al., 1990).

Experimental

(E)-4-(4-Hydroxy-3-methoxyphenyl)but-3-en-2-one (1.92 g, 0.01 mol) and Et3N (1.21 g, 0.012 mol) was dissolved in dry CH2Cl2 (50 ml). Acetyl chloride (1.02 g, 0.012 mol) was slowly added (ten minutes) to this solution by a syringe. The mixture was stirred at room temperature until the disappearance of ketone (monitored by thin layer chromatography). Then the mixture was poured into 50 ml brine and extracted with CH2Cl2 (40 ml). The organic layer was combined and dried over anhydrous Na2SO4. Removal of the solvent under reduced pressure and purification of the residue by recrystallization gave the title compound (2.1 g, yield 90%). The colourless crystals (average dimensions 0.3 mm × 0.2 mm × 0.2 mm) suitable for X-ray data collection were obtained by slow evaporation of a CH2Cl2 and MeOH solution in a ratio 4:1 at 293 K.

Refinement

The difference electron density map has shown that the structure is disordered over two orientations in the E-ethen-1,2-yl group (C7 and C8 atoms). The H atoms could have been distinguished in the difference electron density maps, even in the disordered parts. The disordered parts were assumed to have the same geometry. The applied constraints: The sum of the occupancies of the disordered parts equaled to 1; the methyl as well as the aryl and the ethenyl H atoms were refined in idealized geometry with distances equal to 0.96, 0.93 and 0.93 Å, respectively. Uiso=1.2Ueq(Caryl/Cethenyl) and Uiso=1.5Ueq(Cmethyl). As to the restraints the pairs of the distances C8-C9 and C8-C9'; C1-C7 and C1-C7'; C7-C8 and C7-C8' were set to be as close possible by the command SADI with the effective standard uncertainty set to 0.001. The displacement parameters of C1, C7, C7', C8, C8', C9 were subjected to the restraint DELU 0.001 001.

From the refinement have been omitted diffractions 0 0 1; -2 0 2; -2 0 4, -1 0 2, -1 0 1 that did not match the model.

The refined occupational parameters of the disordered groups C7(H7)-C8(H8) and C7'(H7')-C8'(H8') converged to 0.568 (5) and 0.432 (5), respectively.

Figures

Fig. 1.
View of the title molecule disordered over two positions showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are represented by spheres of arbitrary radius.
Fig. 2.
Intermolecular C—H···O interactions (dotted lines) in the title compound. [Symmetry code: 1 - x, 1 - y, 1 - z]

Crystal data

C13H14O4Z = 2
Mr = 234.24F000 = 248
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.2534 (5) ÅCell parameters from 1174 reflections
b = 7.5797 (5) Åθ = 3.8–27.7º
c = 13.9718 (8) ŵ = 0.09 mm1
α = 96.611 (2)ºT = 299 (2) K
β = 91.487 (2)ºBlock, colourless
γ = 110.599 (2)º0.30 × 0.23 × 0.20 mm
V = 614.21 (7) Å3

Data collection

Bruker SMART 4K CCD area-detector diffractometer2381 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.049
T = 299(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −7→7
Tmin = 0.981, Tmax = 0.989k = −8→9
3984 measured reflectionsl = −10→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: difference Fourier map
wR(F2) = 0.220H-atom parameters constrained
S = 1.10  w = 1/[σ2(Fo2) + (0.1082P)2 + 0.0333P] where P = (Fo2 + 2Fc2)/3
2381 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.23 e Å3
14 restraintsΔρmin = −0.47 e Å3
61 constraintsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7293 (5)0.3948 (4)0.2545 (3)0.0882 (10)
C20.9194 (5)0.5292 (4)0.3052 (2)0.0738 (8)
H20.90740.57630.36850.089*
C31.1270 (4)0.5962 (3)0.26515 (19)0.0624 (7)
C41.1411 (4)0.5259 (3)0.16982 (19)0.0609 (7)
C50.9549 (5)0.3919 (4)0.1173 (2)0.0768 (8)
H50.96730.34600.05380.092*
C60.7504 (5)0.3261 (4)0.1588 (3)0.0937 (11)
H60.62410.23490.12320.112*
C70.4817 (6)0.2784 (6)0.2726 (3)0.0590 (12)0.568 (5)
H70.38090.18600.22670.071*0.568 (5)
C80.4287 (6)0.3213 (5)0.3572 (2)0.0590 (12)0.568 (5)
H80.53500.41570.40060.071*0.568 (5)
C7'0.5396 (6)0.3583 (5)0.3256 (2)0.0695 (19)0.432 (5)
H7'0.56590.43480.38490.083*0.432 (5)
C8'0.3469 (9)0.2245 (8)0.3042 (3)0.0690 (17)0.432 (5)
H8'0.30870.14330.24620.083*0.432 (5)
C90.1831 (5)0.2135 (5)0.3871 (3)0.0823 (9)
C10−0.0103 (8)0.0611 (5)0.3285 (3)0.1215 (14)
H10A−0.14000.02130.36680.182*
H10B0.0349−0.04520.30820.182*
H10C−0.05060.10900.27280.182*
C111.3290 (6)0.7714 (5)0.4125 (2)0.0957 (10)
H11A1.23090.84250.42720.144*
H11B1.48300.84660.43710.144*
H11C1.27710.65680.44200.144*
C121.4400 (5)0.7588 (4)0.10439 (18)0.0678 (7)
C131.6743 (5)0.7974 (5)0.0730 (2)0.0937 (10)
H13A1.67240.69990.02220.141*
H13B1.77410.79860.12660.141*
H13C1.72860.91870.04970.141*
O10.1650 (4)0.2704 (4)0.46647 (19)0.1071 (8)
O21.3230 (3)0.7243 (3)0.31006 (13)0.0802 (6)
O31.3305 (3)0.8606 (3)0.10693 (14)0.0814 (6)
O41.3533 (3)0.5806 (2)0.13013 (12)0.0693 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0607 (15)0.0758 (16)0.144 (2)0.0288 (13)0.0191 (15)0.0587 (17)
C20.0849 (16)0.0753 (14)0.0869 (16)0.0450 (13)0.0302 (12)0.0313 (12)
C30.0681 (13)0.0545 (11)0.0715 (14)0.0262 (10)0.0083 (11)0.0124 (10)
C40.0657 (13)0.0539 (11)0.0710 (14)0.0260 (10)0.0114 (10)0.0120 (10)
C50.0794 (16)0.0613 (13)0.0850 (16)0.0210 (12)−0.0046 (12)0.0102 (11)
C60.0754 (17)0.0681 (15)0.127 (2)0.0162 (13)−0.0100 (16)0.0285 (15)
C70.071 (3)0.047 (2)0.056 (2)0.022 (2)−0.007 (2)−0.0067 (18)
C80.069 (4)0.060 (3)0.051 (3)0.024 (3)0.001 (2)0.003 (2)
C8'0.075 (4)0.072 (4)0.059 (4)0.029 (3)0.015 (3)0.009 (3)
C7'0.061 (4)0.046 (3)0.067 (5)0.019 (3)0.001 (3)0.006 (3)
C90.0968 (19)0.0915 (17)0.0871 (18)0.0544 (16)0.0341 (15)0.0406 (15)
C100.170 (3)0.105 (2)0.111 (2)0.077 (2)−0.014 (2)0.0052 (17)
C110.118 (2)0.1023 (18)0.0702 (16)0.0465 (16)−0.0048 (13)−0.0076 (13)
C120.0737 (14)0.0587 (13)0.0602 (13)0.0164 (11)0.0068 (10)−0.0040 (9)
C130.0821 (17)0.0900 (17)0.1022 (19)0.0205 (14)0.0215 (13)0.0031 (13)
O10.1010 (13)0.1159 (14)0.0938 (13)0.0276 (11)0.0235 (10)0.0089 (11)
O20.0838 (11)0.0797 (10)0.0694 (10)0.0189 (9)0.0060 (7)−0.0027 (7)
O30.0893 (11)0.0624 (9)0.0981 (12)0.0285 (9)0.0171 (8)0.0156 (8)
O40.0753 (10)0.0609 (9)0.0759 (10)0.0279 (7)0.0172 (7)0.0076 (7)

Geometric parameters (Å, °)

C1—C21.375 (4)C7'—H7'0.9300
C1—C61.405 (5)C8'—C91.556 (4)
C1—C71.533 (4)C8'—H8'0.9300
C1—C7'1.538 (4)C9—O11.166 (3)
C2—C31.377 (4)C9—C101.488 (5)
C2—H20.9300C10—H10A0.9600
C3—O21.349 (3)C10—H10B0.9600
C3—C41.393 (3)C10—H10C0.9600
C4—C51.370 (4)C11—O21.431 (3)
C4—O41.395 (3)C11—H11A0.9600
C5—C61.370 (4)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300C12—O31.197 (3)
C7—C81.273 (3)C12—O41.362 (3)
C7—H70.9300C12—C131.479 (4)
C8—C91.559 (4)C13—H13A0.9600
C8—H80.9300C13—H13B0.9600
C7'—C8'1.274 (4)C13—H13C0.9600
C2—C1—C6118.2 (3)C7'—C8'—H8'124.2
C2—C1—C7138.3 (3)C9—C8'—H8'124.2
C6—C1—C7103.5 (3)O1—C9—C10121.7 (3)
C2—C1—C7'105.1 (3)O1—C9—C8'145.9 (3)
C6—C1—C7'136.7 (3)C10—C9—C8'92.4 (3)
C1—C2—C3122.0 (3)O1—C9—C8109.7 (3)
C1—C2—H2119.0C10—C9—C8128.6 (3)
C3—C2—H2119.0C9—C10—H10A109.5
O2—C3—C2126.0 (3)C9—C10—H10B109.5
O2—C3—C4115.8 (2)H10A—C10—H10B109.5
C2—C3—C4118.2 (3)C9—C10—H10C109.5
C5—C4—C3121.3 (2)H10A—C10—H10C109.5
C5—C4—O4119.3 (2)H10B—C10—H10C109.5
C3—C4—O4119.2 (2)O2—C11—H11A109.5
C4—C5—C6119.6 (3)O2—C11—H11B109.5
C4—C5—H5120.2H11A—C11—H11B109.5
C6—C5—H5120.2O2—C11—H11C109.5
C5—C6—C1120.8 (3)H11A—C11—H11C109.5
C5—C6—H6119.6H11B—C11—H11C109.5
C1—C6—H6119.6O3—C12—O4121.7 (2)
C8—C7—C1112.9 (2)O3—C12—C13128.1 (3)
C8—C7—H7123.6O4—C12—C13110.2 (3)
C1—C7—H7123.6C12—C13—H13A109.5
C7—C8—C9119.1 (3)C12—C13—H13B109.5
C7—C8—H8120.5H13A—C13—H13B109.5
C9—C8—H8120.5C12—C13—H13C109.5
C8'—C7'—C1120.7 (3)H13A—C13—H13C109.5
C8'—C7'—H7'119.6H13B—C13—H13C109.5
C1—C7'—H7'119.6C3—O2—C11117.5 (2)
C7'—C8'—C9111.7 (2)C12—O4—C4118.03 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.583.507 (4)172

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2101).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buszek, K. R. & Brown, N. (2007). Org. Lett.9, 707–710. [PMC free article] [PubMed]
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Kuo, P.-C., Damu, A. G., Cherng, C.-Y., Jeng, J.-F., Teng, C.-M., Lee, E.-J. & Wu, T.-S. (2005). Arch. Pharm. Res.28, 518–528. [PubMed]
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.
  • Yarishkin, O. V., Ryu, H. W., Park, J.-Y., Yang, M. S., Hong, S.-G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett.18, 137–140. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography