PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1506.
Published online 2008 July 16. doi:  10.1107/S1600536808021569
PMCID: PMC2962133

1-(4-Methyl­benzyl­ideneamino)pyridinium iodide

Abstract

The title compound, C13H13N2 +·I, is a derivative of 1-amino­pyridinium iodide. The pyridine and benzene rings are oriented at a dihedral angle of 45.78 (3)°. In the crystal structure, weak inter­molecular C—H(...)I hydrogen bonds link the mol­ecules.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1506-scheme1.jpg

Experimental

Crystal data

  • C13H13N2 +·I
  • M r = 324.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1506-efi1.jpg
  • a = 7.1690 (14) Å
  • b = 12.399 (3) Å
  • c = 15.026 (3) Å
  • V = 1335.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.37 mm−1
  • T = 291 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.536, T max = 0.797
  • 1408 measured reflections
  • 1408 independent reflections
  • 1015 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.125
  • S = 1.08
  • 1408 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 1.10 e Å−3
  • Δρmin = −0.54 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with no Friedel pairs
  • Flack parameter: 0.05 (10)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021569/hk2492sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021569/hk2492Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University for support.

supplementary crystallographic information

Comment

Some derivatives of 1-aminopyidinium iodide is important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (N1/C9-C13) are, of course, planar and they are oriented at a dihedral angle of A/B = 45.78 (3)°.

In the crystal structure, weak intermolecular C-H···I hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 1-aminopyridinium iodide (22.2 g, 0.10 mol) was dissolved in ethanol (20 ml). 4-Methylbenzaldehyde (32.4 g, 0.1 mol) was added with stirring, and then the mixture was heated at reflux for 5 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold ethanol (2 x 10 ml) to obtain a yellow solid (yield; 38 g, 70%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
Fig. 2.
A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H13N2+·IF000 = 632
Mr = 324.15Dx = 1.612 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.1690 (14) Åθ = 2.1–25.3º
b = 12.399 (3) ŵ = 2.37 mm1
c = 15.026 (3) ÅT = 291 (2) K
V = 1335.6 (5) Å3Block, yellow
Z = 40.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.3º
Monochromator: graphiteθmin = 2.1º
T = 291(2) Kh = 0→8
ω/2θ scansk = 0→14
Absorption correction: ψ scan(North et al., 1968)l = 0→18
Tmin = 0.536, Tmax = 0.7973 standard reflections
1408 measured reflections every 120 min
1408 independent reflections intensity decay: none
1015 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048  w = 1/[σ2(Fo2) + (0.0599P)2 + 0.581P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.10 e Å3
1408 reflectionsΔρmin = −0.54 e Å3
146 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with no Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.05 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.63765 (9)0.75120 (8)0.67606 (4)0.0632 (3)
N10.1554 (13)0.6174 (7)0.7189 (6)0.049 (2)
N20.1485 (13)0.6612 (8)0.8065 (6)0.051 (2)
C10.241 (2)1.0008 (11)1.1391 (8)0.068 (4)
H1A0.36851.01691.15410.102*
H1B0.18540.95961.18620.102*
H1C0.17351.06691.13130.102*
C20.2358 (15)0.9358 (10)1.0529 (7)0.053 (3)
C30.1465 (17)0.8349 (9)1.0519 (7)0.055 (3)
H30.09640.80691.10410.065*
C40.1329 (14)0.7771 (8)0.9731 (7)0.048 (3)
H40.07460.71010.97270.058*
C50.2057 (14)0.8187 (9)0.8955 (7)0.044 (3)
C60.2865 (17)0.9199 (8)0.8960 (8)0.055 (3)
H60.33120.94900.84310.066*
C70.3023 (16)0.9792 (10)0.9746 (8)0.059 (3)
H70.35701.04720.97420.071*
C80.2037 (13)0.7578 (10)0.8115 (6)0.051 (3)
H80.24470.79180.75990.062*
C90.2109 (17)0.5139 (9)0.7163 (9)0.061 (3)
H90.23610.47690.76880.073*
C100.230 (2)0.4624 (11)0.6341 (12)0.081 (5)
H100.27150.39140.63050.097*
C110.1874 (17)0.5193 (13)0.5595 (9)0.072 (4)
H110.19530.48590.50420.087*
C120.1332 (19)0.6237 (12)0.5642 (8)0.070 (4)
H120.11040.66270.51250.084*
C130.1126 (18)0.6708 (11)0.6443 (8)0.065 (3)
H130.06810.74110.64780.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.078 (10)0.073 (8)0.054 (7)0.006 (8)−0.006 (8)−0.019 (7)
C20.046 (7)0.058 (8)0.055 (7)0.013 (6)−0.012 (6)0.001 (6)
C30.068 (8)0.046 (6)0.050 (7)0.009 (7)0.016 (6)0.011 (5)
C40.052 (6)0.044 (7)0.048 (5)0.002 (5)−0.007 (5)0.001 (5)
C50.033 (5)0.060 (7)0.038 (6)0.007 (5)0.006 (5)0.006 (5)
C60.059 (7)0.043 (6)0.062 (7)−0.007 (6)0.020 (6)0.001 (6)
C70.054 (7)0.064 (8)0.059 (7)0.007 (6)0.002 (7)0.000 (7)
C80.039 (4)0.073 (8)0.042 (5)0.013 (8)0.001 (4)0.011 (8)
C90.068 (8)0.055 (8)0.061 (7)−0.011 (7)−0.013 (7)0.007 (6)
C100.070 (10)0.064 (9)0.108 (12)−0.016 (9)0.011 (10)−0.026 (10)
C110.046 (8)0.117 (13)0.053 (8)−0.017 (9)0.015 (6)−0.025 (9)
C120.072 (9)0.094 (11)0.044 (7)−0.016 (9)−0.018 (7)0.001 (7)
C130.064 (8)0.075 (8)0.054 (7)0.010 (8)0.007 (7)0.009 (7)
I0.0631 (5)0.0721 (5)0.0544 (4)0.0063 (8)0.0064 (4)−0.0020 (6)
N10.044 (5)0.050 (5)0.053 (5)0.000 (5)0.006 (5)0.001 (5)
N20.049 (5)0.054 (5)0.049 (5)−0.012 (5)0.021 (5)−0.005 (4)

Geometric parameters (Å, °)

C1—C21.526 (15)C8—N21.264 (13)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—N11.344 (13)
C1—H1C0.9600C9—C101.398 (17)
C2—C71.379 (15)C9—H90.9300
C2—C31.405 (16)C10—C111.360 (19)
C3—C41.387 (15)C10—H100.9300
C3—H30.9300C11—C121.353 (17)
C4—C51.379 (13)C11—H110.9300
C4—H40.9300C12—C131.345 (16)
C5—C61.382 (14)C12—H120.9300
C5—C81.471 (13)C13—N11.338 (14)
C6—C71.396 (15)C13—H130.9300
C6—H60.9300N1—N21.425 (11)
C7—H70.9300
C2—C1—H1A109.5C6—C7—H7120.4
C2—C1—H1B109.5N2—C8—C5122.7 (9)
H1A—C1—H1B109.5N2—C8—H8118.6
C2—C1—H1C109.5C5—C8—H8118.6
H1A—C1—H1C109.5N1—C9—C10119.4 (12)
H1B—C1—H1C109.5N1—C9—H9120.3
C7—C2—C3119.7 (11)C10—C9—H9120.3
C7—C2—C1120.6 (12)C11—C10—C9118.0 (12)
C3—C2—C1119.4 (12)C11—C10—H10121.0
C4—C3—C2120.1 (10)C9—C10—H10121.0
C4—C3—H3120.0C12—C11—C10121.2 (13)
C2—C3—H3120.0C12—C11—H11119.4
C5—C4—C3120.2 (10)C10—C11—H11119.4
C5—C4—H4119.9C13—C12—C11119.6 (13)
C3—C4—H4119.9C13—C12—H12120.2
C4—C5—C6119.6 (10)C11—C12—H12120.2
C4—C5—C8122.0 (10)N1—C13—C12120.6 (12)
C6—C5—C8118.4 (10)N1—C13—H13119.7
C5—C6—C7121.1 (11)C12—C13—H13119.7
C5—C6—H6119.4C13—N1—C9121.1 (11)
C7—C6—H6119.4C13—N1—N2125.3 (9)
C2—C7—C6119.2 (11)C9—N1—N2113.6 (10)
C2—C7—H7120.4C8—N2—N1113.9 (9)
C7—C2—C3—C42.9 (16)N1—C9—C10—C11−2(2)
C1—C2—C3—C4177.1 (11)C9—C10—C11—C122(2)
C2—C3—C4—C5−0.5 (17)C10—C11—C12—C13−3(2)
C3—C4—C5—C6−2.2 (16)C11—C12—C13—N14(2)
C3—C4—C5—C8176.6 (10)C12—C13—N1—C9−3.4 (19)
C4—C5—C6—C72.5 (17)C12—C13—N1—N2176.5 (11)
C8—C5—C6—C7−176.3 (10)C10—C9—N1—C132.3 (18)
C3—C2—C7—C6−2.6 (17)C10—C9—N1—N2−177.6 (11)
C1—C2—C7—C6−176.7 (12)C5—C8—N2—N1179.2 (9)
C5—C6—C7—C20.0 (18)C13—N1—N2—C8−38.8 (15)
C4—C5—C8—N2−5.4 (16)C9—N1—N2—C8141.1 (10)
C6—C5—C8—N2173.3 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···Ii0.933.063.795 (12)138
C12—H12···Iii0.933.033.929 (13)162

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2492).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography