PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1503–o1504.
Published online 2008 July 16. doi:  10.1107/S1600536808021272
PMCID: PMC2962131

4-[(E)-2,6-Dichloro­benzyl­ideneamino]-3-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title Schiff base compound, C21H22Cl2N4S, the triazole ring makes dihedral angles of 2.15 (11) and 87.48 (11)° with the 2,6-dichloro­phenyl and methyl­propyl­phenyl rings, respectively. Weak intra­molecular C—H(...)S and C—H(...)Cl inter­actions generate S(6) and S(5) ring motifs, respectively. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by N—H(...)S hydrogen bonds. These dimers are arranged into sheets parallel to the ab plane and are stacked along the c axis. C—H(...)π inter­actions involving the methyl­propyl­phenyl ring and π–π inter­actions involving the dichloro­phenyl ring [centroid–centroid distance = 3.5865 (3) Å] are also observed.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Fun et al. (2008a [triangle],b [triangle]). For background to the activities and applications of 1,2,4-triazole derivatives, see: Almasirad et al. (2004 [triangle]); Al-Soud et al. (2003 [triangle]); Amir & Shikha (2004 [triangle]); Holla et al. (2003 [triangle]); Kawashima et al. (1987 [triangle]); Palaska et al. (2002 [triangle]); Walczak et al. (2004 [triangle]); Zitouni et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1503-scheme1.jpg

Experimental

Crystal data

  • C21H22Cl2N4S
  • M r = 433.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1503-efi1.jpg
  • a = 8.6190 (2) Å
  • b = 9.4441 (2) Å
  • c = 14.4244 (4) Å
  • α = 104.669 (2)°
  • β = 95.492 (2)°
  • γ = 110.418 (1)°
  • V = 1042.33 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 100.0 (1) K
  • 0.29 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.887, T max = 0.934
  • 19865 measured reflections
  • 6032 independent reflections
  • 4139 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.136
  • S = 1.00
  • 6032 reflections
  • 256 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021272/ci2627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021272/ci2627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KVS, BK and AM are grateful to Kerala State Council for Science Technology and Environment, Thiruvananthapuram, for financial assistance. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

1,2,4-Triazoles and their derivatives represent an overwhelming and rapid developing field in modern heterocyclic chemistry. A degree of respectability has been bestowed for 1,2,4-triazole derivatives due to their antibacterial, antifungal (Zitouni et al., 2005), antitubercular (Walczak et al., 2004), anticancer (Holla et al., 2003), antitumor (Al-Soud et al., 2003), anticonvulsant (Almasirad et al., 2004), antiinflammatory, and analgesic properties (Amir & Shikha, 2004). Certain 1,2,4-triazoles also find applications in the preparation of photographic plates, polymers, and as analytical agents (Kawashima et al., 1987). Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with antipyretic, anti-inflammatory and analgesic properties (Palaska et al., 2002). Our earlier studies involved synthesis of heterocyclic compounds which contain in their structures both the ibuprofen and 1,2,4-triazole fragments (Fun et al., 2008a,b). In this connection and in continuation of our interest in the synthesis of chemically and biologically important heterocycles, we report here the crystal structure of a substituted 1,2,4-triazole Schiff base carrying only the ibuprofen moiety.

In the title Schiff base compound (Fig. 1), the 1,2,4 triazole ring (C8-C9/N1-N3) is planar with a maximum deviation of 0.009 (2) Å for atom N3. The 1,2,4 triazole ring is co-planar with the 2,6-dichlorophenyl (C11-C16) ring [dihedral angle = 2.15 (11)°] but is almost perpendicular to the methylpropylphenyl (C1-C6) ring with a dihedral angle of 87.48 (11)°. The methylidene amino linkage (N4/C10) is slightly twisted from the mean plane of the 1,2,4 triazole ring as indicated by the torsion angle C9–N3–N4–C10 of 26.4 (3)°. Weak C—H···S and C—H···Cl intramolecular interactions generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The bond distances and angles have normal values (Allen et al., 1987) and are comparable with closely related structures (Fun et al., 2008a,b).

In the crystal structure, centrosymmetrically related molecules are linked into dimers (Fig. 2) by N—H···S hydrogen bonds (Table 1). These dimers are arranged into sheets parallel to the ab plane and these sheets are stacked along the c axis (Fig. 3). In addition, the crystal structure is stabilized by C—H···π interactions (Table 1) involving the C1-C6 ring (centroid Cg1) and π-π interaction involving the C11-C16 ring (centroid Cg2) [Cg2···Cg2ii = 3.5865 (3) Å, symmetry code: (ii) 1 - x, -y, -z].

Experimental

The title compound was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 2,6-dichlorobenzaldehyde (0.01 mol) in ethanol (50 ml) with the addition of 3 drops of concentrated sulfuric acid for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from a acetone-N,N-dimethylformamide (DMF) (1:3 v/v) solution by slow evaporation (yield 53%; m.p. 438–440 K)

Refinement

All H atoms were placed in calculated positions (N-H = 0.86 Å and C-H = 0.93-0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Weak C—H···S and C—H···Cl hydrogen bonds are shown as dashed lines.
Fig. 2.
Part of the crystal packing of the title compound, viewed along the a axis, showing hydrogen-bonded (dashed lines) dimers.
Fig. 3.
The packing diagram of the title compound, viewed along the c axis, showing stacking of the molecular sheets. Hydrogen bonds are shown as dashed lines.

Crystal data

C21H22Cl2N4SZ = 2
Mr = 433.40F000 = 452
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Melting point = 438–440 K
a = 8.6190 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 9.4441 (2) ÅCell parameters from 6032 reflections
c = 14.4244 (4) Åθ = 1.5–30.0º
α = 104.669 (2)ºµ = 0.43 mm1
β = 95.492 (2)ºT = 100.0 (1) K
γ = 110.418 (1)ºBlock, colourless
V = 1042.33 (5) Å30.29 × 0.20 × 0.16 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6032 independent reflections
Radiation source: fine-focus sealed tube4139 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 1.5º
ω scansh = −12→12
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −13→13
Tmin = 0.887, Tmax = 0.935l = −20→19
19865 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0746P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6032 reflectionsΔρmax = 0.59 e Å3
256 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.79027 (6)−0.43005 (6)−0.06227 (3)0.02335 (13)
Cl10.43164 (7)−0.07928 (7)0.21127 (4)0.03523 (15)
Cl20.41695 (7)−0.33808 (6)−0.17537 (4)0.03136 (14)
N10.9611 (2)−0.3270 (2)0.21761 (12)0.0244 (4)
N20.9465 (2)−0.3961 (2)0.11923 (12)0.0240 (4)
H2A1.0037−0.45110.09710.029*
N30.7738 (2)−0.28053 (18)0.12730 (11)0.0192 (3)
N40.6602 (2)−0.20834 (19)0.11584 (12)0.0229 (4)
C10.9409 (2)0.0211 (2)0.32320 (13)0.0218 (4)
C21.1052 (3)0.0657 (2)0.30759 (15)0.0259 (4)
H2B1.1515−0.01050.29150.031*
C31.2013 (3)0.2223 (2)0.31568 (15)0.0266 (4)
H3A1.31090.24920.30460.032*
C41.1366 (3)0.3403 (2)0.34015 (14)0.0244 (4)
C50.9747 (3)0.2957 (2)0.35952 (14)0.0262 (4)
H5A0.93010.37260.37860.031*
C60.8779 (3)0.1389 (2)0.35107 (14)0.0234 (4)
H6A0.76960.11250.36420.028*
C70.8319 (3)−0.1523 (2)0.31079 (14)0.0225 (4)
H7A0.7131−0.16510.30130.027*
C80.8563 (2)−0.2560 (2)0.22068 (14)0.0217 (4)
C90.8351 (2)−0.3702 (2)0.06064 (14)0.0206 (4)
C100.5498 (2)−0.2695 (2)0.03633 (14)0.0223 (4)
H10A0.5495−0.3578−0.01050.027*
C110.4228 (2)−0.2036 (2)0.01691 (14)0.0215 (4)
C120.3619 (3)−0.1177 (2)0.08757 (15)0.0239 (4)
C130.2388 (3)−0.0628 (2)0.06263 (16)0.0270 (4)
H13A0.2011−0.00540.11120.032*
C140.1729 (3)−0.0938 (2)−0.03479 (16)0.0278 (5)
H14A0.0906−0.0570−0.05160.033*
C150.2278 (3)−0.1792 (3)−0.10761 (16)0.0284 (5)
H15A0.1829−0.2003−0.17320.034*
C160.3504 (3)−0.2325 (2)−0.08126 (14)0.0246 (4)
C171.2359 (3)0.5077 (2)0.34117 (15)0.0281 (5)
H17A1.17870.52860.28810.034*
H17B1.34620.51470.32810.034*
C181.2612 (3)0.6380 (2)0.43631 (15)0.0248 (4)
H18A1.14980.62740.45120.030*
C191.3448 (3)0.8002 (2)0.42311 (17)0.0331 (5)
H19A1.35840.88130.48260.050*
H19B1.27520.80980.37090.050*
H19C1.45350.81210.40750.050*
C201.3655 (3)0.6216 (3)0.52176 (15)0.0307 (5)
H20A1.37510.70170.58080.046*
H20B1.47630.63450.50920.046*
H20C1.31090.51850.52890.046*
C210.8713 (3)−0.2028 (3)0.39995 (15)0.0315 (5)
H21A0.8010−0.31240.38820.047*
H21B0.8496−0.13870.45640.047*
H21C0.9880−0.18900.41130.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0258 (3)0.0241 (2)0.0194 (2)0.0112 (2)0.00672 (19)0.00244 (18)
Cl10.0389 (3)0.0551 (4)0.0221 (3)0.0310 (3)0.0104 (2)0.0093 (2)
Cl20.0362 (3)0.0338 (3)0.0213 (3)0.0135 (2)0.0063 (2)0.0036 (2)
N10.0296 (9)0.0241 (8)0.0190 (8)0.0132 (7)0.0055 (7)0.0016 (7)
N20.0272 (9)0.0240 (8)0.0228 (8)0.0152 (7)0.0061 (7)0.0030 (7)
N30.0210 (8)0.0184 (7)0.0182 (8)0.0081 (6)0.0061 (6)0.0043 (6)
N40.0241 (8)0.0230 (8)0.0247 (9)0.0120 (7)0.0080 (7)0.0072 (7)
C10.0245 (10)0.0248 (10)0.0144 (9)0.0095 (8)0.0034 (7)0.0036 (7)
C20.0280 (10)0.0235 (10)0.0270 (11)0.0134 (8)0.0080 (8)0.0033 (8)
C30.0245 (10)0.0280 (10)0.0245 (10)0.0090 (8)0.0086 (8)0.0037 (8)
C40.0299 (10)0.0252 (10)0.0159 (9)0.0108 (8)0.0050 (8)0.0023 (8)
C50.0293 (10)0.0250 (10)0.0242 (10)0.0140 (8)0.0062 (8)0.0020 (8)
C60.0245 (10)0.0261 (10)0.0205 (9)0.0124 (8)0.0072 (8)0.0037 (8)
C70.0251 (10)0.0229 (9)0.0195 (9)0.0103 (8)0.0064 (8)0.0042 (7)
C80.0249 (10)0.0194 (9)0.0199 (9)0.0075 (8)0.0069 (7)0.0051 (7)
C90.0227 (9)0.0165 (8)0.0212 (9)0.0067 (7)0.0071 (7)0.0039 (7)
C100.0216 (9)0.0203 (9)0.0237 (10)0.0066 (8)0.0081 (8)0.0054 (7)
C110.0192 (9)0.0203 (9)0.0235 (10)0.0049 (7)0.0062 (8)0.0072 (7)
C120.0228 (10)0.0270 (10)0.0223 (10)0.0093 (8)0.0068 (8)0.0082 (8)
C130.0225 (10)0.0300 (11)0.0323 (11)0.0125 (8)0.0106 (8)0.0113 (9)
C140.0219 (10)0.0300 (11)0.0356 (12)0.0107 (9)0.0062 (9)0.0158 (9)
C150.0274 (10)0.0296 (11)0.0255 (11)0.0074 (9)0.0028 (8)0.0103 (8)
C160.0246 (10)0.0244 (10)0.0226 (10)0.0065 (8)0.0079 (8)0.0064 (8)
C170.0349 (12)0.0259 (10)0.0224 (10)0.0104 (9)0.0104 (9)0.0060 (8)
C180.0267 (10)0.0220 (10)0.0241 (10)0.0086 (8)0.0062 (8)0.0053 (8)
C190.0390 (13)0.0245 (10)0.0335 (12)0.0102 (10)0.0105 (10)0.0070 (9)
C200.0353 (12)0.0306 (11)0.0264 (11)0.0164 (9)0.0049 (9)0.0046 (9)
C210.0416 (13)0.0319 (11)0.0234 (11)0.0159 (10)0.0103 (9)0.0088 (9)

Geometric parameters (Å, °)

S1—C91.6797 (19)C10—C111.472 (3)
Cl1—C121.730 (2)C10—H10A0.93
Cl2—C161.740 (2)C11—C121.398 (3)
N1—C81.297 (2)C11—C161.409 (3)
N1—N21.377 (2)C12—C131.389 (3)
N2—C91.345 (2)C13—C141.381 (3)
N2—H2A0.86C13—H13A0.93
N3—C81.384 (2)C14—C151.382 (3)
N3—C91.385 (2)C14—H14A0.93
N3—N41.394 (2)C15—C161.381 (3)
N4—C101.275 (2)C15—H15A0.93
C1—C21.388 (3)C17—C181.531 (3)
C1—C61.390 (3)C17—H17A0.97
C1—C71.530 (3)C17—H17B0.97
C2—C31.388 (3)C18—C191.519 (3)
C2—H2B0.93C18—C201.527 (3)
C3—C41.396 (3)C18—H18A0.98
C3—H3A0.93C19—H19A0.96
C4—C51.388 (3)C19—H19B0.96
C4—C171.508 (3)C19—H19C0.96
C5—C61.389 (3)C20—H20A0.96
C5—H5A0.93C20—H20B0.96
C6—H6A0.93C20—H20C0.96
C7—C81.498 (3)C21—H21A0.96
C7—C211.529 (3)C21—H21B0.96
C7—H7A0.98C21—H21C0.96
C8—N1—N2104.17 (15)C13—C12—Cl1116.33 (16)
C9—N2—N1114.24 (15)C11—C12—Cl1121.52 (16)
C9—N2—H2A122.9C14—C13—C12119.57 (19)
N1—N2—H2A122.9C14—C13—H13A120.2
C8—N3—C9108.43 (15)C12—C13—H13A120.2
C8—N3—N4119.01 (15)C13—C14—C15120.7 (2)
C9—N3—N4132.41 (16)C13—C14—H14A119.6
C10—N4—N3117.04 (16)C15—C14—H14A119.6
C2—C1—C6117.99 (19)C16—C15—C14118.81 (19)
C2—C1—C7121.30 (17)C16—C15—H15A120.6
C6—C1—C7120.71 (18)C14—C15—H15A120.6
C1—C2—C3121.00 (18)C15—C16—C11122.96 (19)
C1—C2—H2B119.5C15—C16—Cl2117.26 (16)
C3—C2—H2B119.5C11—C16—Cl2119.79 (16)
C2—C3—C4121.3 (2)C4—C17—C18115.60 (17)
C2—C3—H3A119.4C4—C17—H17A108.4
C4—C3—H3A119.4C18—C17—H17A108.4
C5—C4—C3117.32 (19)C4—C17—H17B108.4
C5—C4—C17121.41 (18)C18—C17—H17B108.4
C3—C4—C17121.22 (19)H17A—C17—H17B107.4
C4—C5—C6121.51 (18)C19—C18—C20110.68 (17)
C4—C5—H5A119.2C19—C18—C17109.89 (18)
C6—C5—H5A119.2C20—C18—C17111.28 (17)
C5—C6—C1120.83 (19)C19—C18—H18A108.3
C5—C6—H6A119.6C20—C18—H18A108.3
C1—C6—H6A119.6C17—C18—H18A108.3
C8—C7—C21110.54 (16)C18—C19—H19A109.5
C8—C7—C1108.88 (16)C18—C19—H19B109.5
C21—C7—C1112.70 (16)H19A—C19—H19B109.5
C8—C7—H7A108.2C18—C19—H19C109.5
C21—C7—H7A108.2H19A—C19—H19C109.5
C1—C7—H7A108.2H19B—C19—H19C109.5
N1—C8—N3110.81 (16)C18—C20—H20A109.5
N1—C8—C7126.05 (18)C18—C20—H20B109.5
N3—C8—C7123.04 (17)H20A—C20—H20B109.5
N2—C9—N3102.32 (15)C18—C20—H20C109.5
N2—C9—S1127.33 (15)H20A—C20—H20C109.5
N3—C9—S1130.33 (15)H20B—C20—H20C109.5
N4—C10—C11121.60 (18)C7—C21—H21A109.5
N4—C10—H10A119.2C7—C21—H21B109.5
C11—C10—H10A119.2H21A—C21—H21B109.5
C12—C11—C16115.84 (18)C7—C21—H21C109.5
C12—C11—C10125.92 (18)H21A—C21—H21C109.5
C16—C11—C10118.21 (17)H21B—C21—H21C109.5
C13—C12—C11122.11 (19)
C8—N1—N2—C90.0 (2)N1—N2—C9—N3−1.0 (2)
C8—N3—N4—C10−158.60 (18)N1—N2—C9—S1177.52 (14)
C9—N3—N4—C1026.4 (3)C8—N3—C9—N21.52 (19)
C6—C1—C2—C3−2.6 (3)N4—N3—C9—N2176.87 (18)
C7—C1—C2—C3177.75 (18)C8—N3—C9—S1−176.89 (16)
C1—C2—C3—C40.3 (3)N4—N3—C9—S1−1.5 (3)
C2—C3—C4—C52.3 (3)N3—N4—C10—C11179.51 (17)
C2—C3—C4—C17−175.13 (19)N4—C10—C11—C12−26.3 (3)
C3—C4—C5—C6−2.6 (3)N4—C10—C11—C16155.8 (2)
C17—C4—C5—C6174.83 (19)C16—C11—C12—C13−0.6 (3)
C4—C5—C6—C10.3 (3)C10—C11—C12—C13−178.53 (19)
C2—C1—C6—C52.3 (3)C16—C11—C12—Cl1177.38 (15)
C7—C1—C6—C5−178.04 (18)C10—C11—C12—Cl1−0.6 (3)
C2—C1—C7—C8−42.3 (2)C11—C12—C13—C140.3 (3)
C6—C1—C7—C8138.03 (19)Cl1—C12—C13—C14−177.75 (16)
C2—C1—C7—C2180.7 (2)C12—C13—C14—C150.1 (3)
C6—C1—C7—C21−98.9 (2)C13—C14—C15—C16−0.2 (3)
N2—N1—C8—N31.0 (2)C14—C15—C16—C11−0.1 (3)
N2—N1—C8—C7−175.37 (18)C14—C15—C16—Cl2−179.50 (16)
C9—N3—C8—N1−1.7 (2)C12—C11—C16—C150.5 (3)
N4—N3—C8—N1−177.76 (17)C10—C11—C16—C15178.60 (19)
C9—N3—C8—C7174.84 (17)C12—C11—C16—Cl2179.88 (15)
N4—N3—C8—C7−1.2 (3)C10—C11—C16—Cl2−2.0 (2)
C21—C7—C8—N1−29.1 (3)C5—C4—C17—C1856.3 (3)
C1—C7—C8—N195.2 (2)C3—C4—C17—C18−126.4 (2)
C21—C7—C8—N3154.92 (18)C4—C17—C18—C19−173.51 (18)
C1—C7—C8—N3−80.8 (2)C4—C17—C18—C2063.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.443.2849 (19)169
C10—H10A···Cl20.932.622.978 (2)104
C10—H10A···S10.932.523.2066 (19)131
C15—H15A···Cg1ii0.932.943.793 (3)154

Symmetry codes: (i) −x+2, −y−1, −z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2627).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett.14, 6057–6059. [PubMed]
  • Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem.11, 1701–1708. [PubMed]
  • Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem.39, 535–545. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1076–o1077. [PMC free article] [PubMed]
  • Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1001–o1002. [PMC free article] [PubMed]
  • Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem.38, 759–767. [PubMed]
  • Kawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem Abstr 106, 138475x.
  • Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Il Farmaco, 57, 101–107. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Walczak, K., Gondela, A. & Suwin’ski, J. (2004). Eur. J. Med. Chem.39, 849–853. [PubMed]
  • Zitouni, G. T., Kaplancíklí, Z. A., Yíldíz, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem.40, 607–613. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography