PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1501–o1502.
Published online 2008 July 16. doi:  10.1107/S1600536808021314
PMCID: PMC2962130

Ethyl 3-nitro-4-(propyl­amino)benzoate

Abstract

In the title compound, C12H16N2O4, intra­molecular N—H(...)O and C—H(...)O hydrogen bonds generate S(6) and S(5) ring motifs, respectively. The nitro group is almost coplanar with the benzene ring, forming a dihedral angle of 6.2 (2)°. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular N—H(...)O and O(...)O inter­actions. Of interest are the short inter­molecular O(...)O inter­actions which cause a stacking arrangement of the mol­ecules along the a axis.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related literature, see: Ishida et al. (2006 [triangle]); Vinodkumar et al. (2008 [triangle]). Rida et al. (2005 [triangle]); Harikrishnan et al. (2008 [triangle]); Moore et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1501-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O4
  • M r = 252.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1501-efi1.jpg
  • a = 4.4914 (4) Å
  • b = 12.0828 (9) Å
  • c = 12.8763 (9) Å
  • α = 62.494 (4)°
  • β = 81.055 (4)°
  • γ = 83.494 (4)°
  • V = 611.57 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100.0 (1) K
  • 0.51 × 0.26 × 0.26 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.949, T max = 0.974
  • 12286 measured reflections
  • 2372 independent reflections
  • 1946 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.252
  • S = 1.17
  • 2372 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected interatomic distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021314/at2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021314/at2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the Malaysian Government and Universiti Sains Malaysia (USM) under the USM Research University Funding (1001/PFARMASI/815026). HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

The benzoic acid cores are precursors to many medicinally important heterocycles, e.g. benzimidazoles (Ishida et al., 2006; Vinodkumar et al., 2008) and benzoxazoles (Rida et al., 2005; Harikrishnan et al., 2008). Using Moore's procedure (Moore et al., 2005) with some modifications, we attempted the derivatization of nitro benzoic acid precursors, which led to the synthesis of the title compound (I) bearing a propylamine motif. Its crystal structure has been determined and is presented here.

In the title compound (I), (Fig. 1), intramolecular N—H···O and C—H···O hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The bond lengths and angles are within normal ranges (Allen et al., 1987).The nitro group is almost coplanar with the benzene ring with torsion angle of -6.4 (5)°. In the crystal structure (Fig. 2), neighbouring molecules are linked together by intermolecular N—H···O and O···O interactions. The interesting feature of the crystal structure is the short intermolecular O···O [symmetry codes: -x, 1 - y, 1 - z; 1 - x, 1 - y, 1 - z] interactions (Table 2) with distances of 2.914 (5) and 2.984 (5) Å which are shorter than the sum of the van der Waals radii of oxygen atoms. These interactions along with the intermolecular N—H···O interactions stack the molecules along the a axis.

Experimental

The title compound (I) was synthesized by adding N,N-diisopropyl ethylamine (DIPEA) (0.20 ml, 1.12 mmol) dropwise to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (200 mg, 0.93 mmol) in dry dichloromethane (10 ml). Propylamine (0.10 ml, 1.03 mmol) was added slowly with stirring, and then the mixture was stirred overnight at room temperature under N2. After completion of the reaction, the mixture was washed with 10% Na2CO3 (10 ml). The aqueous layer was washed again with dichloromethane (3 x 15 ml). The organic fractions were pooled and dried over MgSO4 and the solvent was removed by rotary evaporator. Recrystallization with hot hexane afforded the desired compound (I) as yellow needle-like crystals.

Refinement

The H-atom bound to N1 was located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model with Uiso = 1.2 or 1.5Ueq(C). A rotating-group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), showing stacking arrangement viewed down the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

Crystal data

C12H16N2O4Z = 2
Mr = 252.27F000 = 268
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 4.4914 (4) ÅCell parameters from 6896 reflections
b = 12.0828 (9) Åθ = 3.2–33.0º
c = 12.8763 (9) ŵ = 0.10 mm1
α = 62.494 (4)ºT = 100.0 (1) K
β = 81.055 (4)ºNeedle, yellow
γ = 83.494 (4)º0.51 × 0.26 × 0.26 mm
V = 611.57 (8) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2372 independent reflections
Radiation source: fine-focus sealed tube1946 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 100.0(1) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −5→5
Tmin = 0.949, Tmax = 0.974k = −14→14
12286 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.252  w = 1/[σ2(Fo2) + (0.1098P)2 + 1.609P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
2372 reflectionsΔρmax = 0.47 e Å3
169 parametersΔρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2464 (7)0.4136 (3)0.5558 (2)0.0326 (7)
O20.5971 (6)0.2725 (2)0.6301 (2)0.0316 (7)
O30.8766 (6)0.1455 (2)1.0099 (2)0.0239 (6)
O40.7178 (6)0.2578 (2)1.1092 (2)0.0272 (6)
N10.0274 (7)0.5600 (3)0.6530 (3)0.0217 (7)
N20.4117 (7)0.3535 (3)0.6346 (3)0.0228 (7)
C10.3823 (8)0.3799 (3)0.7345 (3)0.0195 (7)
C20.5528 (8)0.3013 (3)0.8258 (3)0.0200 (7)
H2A0.67750.23740.81920.024*
C30.5379 (8)0.3177 (3)0.9255 (3)0.0200 (7)
C40.3490 (8)0.4159 (3)0.9327 (3)0.0210 (7)
H4A0.33580.42740.99990.025*
C50.1849 (8)0.4945 (3)0.8436 (3)0.0215 (7)
H5A0.06500.55890.85120.026*
C60.1917 (8)0.4809 (3)0.7389 (3)0.0203 (7)
C7−0.1636 (8)0.6655 (3)0.6552 (3)0.0223 (7)
H7A−0.27550.63880.73300.027*
H7B−0.30860.68950.59910.027*
C80.0108 (8)0.7792 (3)0.6262 (3)0.0238 (8)
H8A0.15180.75720.68340.029*
H8B0.12510.80650.54880.029*
C9−0.2061 (9)0.8850 (3)0.6280 (3)0.0281 (8)
H9A−0.09320.95320.61690.042*
H9B−0.33040.85570.70250.042*
H9C−0.33130.91260.56570.042*
C100.7166 (8)0.2397 (3)1.0240 (3)0.0212 (7)
C111.0559 (8)0.0633 (3)1.1042 (3)0.0253 (8)
H11A1.13450.11151.13580.030*
H11B1.22570.02611.07280.030*
C120.8678 (9)−0.0386 (3)1.2015 (3)0.0292 (8)
H12A0.9926−0.09431.26070.044*
H12B0.7837−0.08431.16960.044*
H12C0.7077−0.00201.23610.044*
H1N10.031 (11)0.547 (4)0.593 (5)0.038 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0432 (16)0.0348 (15)0.0271 (14)0.0142 (12)−0.0198 (12)−0.0189 (12)
O20.0420 (16)0.0317 (14)0.0240 (14)0.0155 (12)−0.0099 (11)−0.0171 (11)
O30.0281 (13)0.0254 (13)0.0187 (12)0.0036 (10)−0.0072 (10)−0.0099 (10)
O40.0372 (15)0.0284 (13)0.0185 (12)0.0009 (11)−0.0075 (10)−0.0120 (11)
N10.0265 (16)0.0218 (14)0.0198 (15)0.0033 (12)−0.0064 (12)−0.0117 (12)
N20.0290 (16)0.0206 (14)0.0189 (14)0.0030 (12)−0.0069 (12)−0.0087 (12)
C10.0248 (17)0.0185 (16)0.0145 (16)−0.0023 (13)−0.0022 (13)−0.0065 (13)
C20.0232 (17)0.0182 (15)0.0186 (16)−0.0010 (13)−0.0024 (13)−0.0084 (13)
C30.0211 (17)0.0211 (16)0.0170 (16)−0.0035 (13)−0.0014 (13)−0.0077 (13)
C40.0275 (18)0.0212 (16)0.0143 (15)−0.0045 (13)−0.0003 (13)−0.0080 (13)
C50.0228 (17)0.0216 (16)0.0201 (17)−0.0017 (13)−0.0005 (13)−0.0100 (14)
C60.0200 (16)0.0200 (16)0.0199 (17)−0.0032 (13)−0.0015 (13)−0.0080 (13)
C70.0235 (17)0.0215 (17)0.0219 (17)0.0052 (13)−0.0060 (13)−0.0101 (14)
C80.0248 (18)0.0235 (17)0.0215 (17)0.0016 (14)−0.0030 (13)−0.0094 (14)
C90.033 (2)0.0240 (18)0.0261 (19)0.0008 (15)−0.0019 (15)−0.0112 (15)
C100.0228 (17)0.0204 (16)0.0188 (16)−0.0036 (13)−0.0012 (13)−0.0074 (13)
C110.0249 (18)0.0290 (18)0.0208 (17)0.0048 (14)−0.0080 (14)−0.0101 (15)
C120.034 (2)0.0262 (18)0.0247 (19)0.0051 (15)−0.0066 (15)−0.0101 (15)

Geometric parameters (Å, °)

O1—N21.241 (4)C5—C61.426 (5)
O2—N21.228 (4)C5—H5A0.9300
O3—C101.345 (4)C7—C81.524 (5)
O3—C111.455 (4)C7—H7A0.9700
O4—C101.214 (4)C7—H7B0.9700
N1—C61.342 (4)C8—C91.523 (5)
N1—C71.462 (4)C8—H8A0.9700
N1—H1N10.86 (5)C8—H8B0.9700
N2—C11.445 (4)C9—H9A0.9600
C1—C21.398 (5)C9—H9B0.9600
C1—C61.428 (5)C9—H9C0.9600
C2—C31.378 (5)C11—C121.511 (5)
C2—H2A0.9300C11—H11A0.9700
C3—C41.409 (5)C11—H11B0.9700
C3—C101.477 (5)C12—H12A0.9600
C4—C51.364 (5)C12—H12B0.9600
C4—H4A0.9300C12—H12C0.9600
O1···O1i2.914 (5)O1···O1ii2.984 (5)
C10—O3—C11116.1 (3)C8—C7—H7B108.8
C6—N1—C7125.0 (3)H7A—C7—H7B107.7
C6—N1—H1N1118 (3)C9—C8—C7110.2 (3)
C7—N1—H1N1117 (3)C9—C8—H8A109.6
O2—N2—O1121.8 (3)C7—C8—H8A109.6
O2—N2—C1119.5 (3)C9—C8—H8B109.6
O1—N2—C1118.6 (3)C7—C8—H8B109.6
C2—C1—C6122.1 (3)H8A—C8—H8B108.1
C2—C1—N2116.1 (3)C8—C9—H9A109.5
C6—C1—N2121.8 (3)C8—C9—H9B109.5
C3—C2—C1120.6 (3)H9A—C9—H9B109.5
C3—C2—H2A119.7C8—C9—H9C109.5
C1—C2—H2A119.7H9A—C9—H9C109.5
C2—C3—C4118.4 (3)H9B—C9—H9C109.5
C2—C3—C10123.3 (3)O4—C10—O3123.5 (3)
C4—C3—C10118.2 (3)O4—C10—C3123.7 (3)
C5—C4—C3121.6 (3)O3—C10—C3112.8 (3)
C5—C4—H4A119.2O3—C11—C12110.8 (3)
C3—C4—H4A119.2O3—C11—H11A109.5
C4—C5—C6122.0 (3)C12—C11—H11A109.5
C4—C5—H5A119.0O3—C11—H11B109.5
C6—C5—H5A119.0C12—C11—H11B109.5
N1—C6—C5120.4 (3)H11A—C11—H11B108.1
N1—C6—C1124.4 (3)C11—C12—H12A109.5
C5—C6—C1115.2 (3)C11—C12—H12B109.5
N1—C7—C8113.8 (3)H12A—C12—H12B109.5
N1—C7—H7A108.8C11—C12—H12C109.5
C8—C7—H7A108.8H12A—C12—H12C109.5
N1—C7—H7B108.8H12B—C12—H12C109.5
O2—N2—C1—C2−5.7 (5)C4—C5—C6—C1−0.1 (5)
O1—N2—C1—C2174.0 (3)C2—C1—C6—N1178.9 (3)
O2—N2—C1—C6173.9 (3)N2—C1—C6—N1−0.5 (5)
O1—N2—C1—C6−6.5 (5)C2—C1—C6—C5−0.9 (5)
C6—C1—C2—C31.2 (5)N2—C1—C6—C5179.6 (3)
N2—C1—C2—C3−179.2 (3)C6—N1—C7—C878.2 (4)
C1—C2—C3—C4−0.5 (5)N1—C7—C8—C9178.8 (3)
C1—C2—C3—C10−178.7 (3)C11—O3—C10—O40.3 (5)
C2—C3—C4—C5−0.5 (5)C11—O3—C10—C3−179.2 (3)
C10—C3—C4—C5177.8 (3)C2—C3—C10—O4175.7 (3)
C3—C4—C5—C60.9 (5)C4—C3—C10—O4−2.5 (5)
C7—N1—C6—C51.2 (5)C2—C3—C10—O3−4.8 (5)
C7—N1—C6—C1−178.6 (3)C4—C3—C10—O3177.0 (3)
C4—C5—C6—N1180.0 (3)C10—O3—C11—C1285.5 (4)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.85 (5)2.00 (6)2.633 (5)131 (5)
N1—H1N1···O1i0.85 (5)2.28 (5)2.998 (4)141 (5)
C2—H2A···O20.932.352.674 (4)100

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2590).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harikrishnan, L. S., Kamau, M. G., Herpin, T. F., Morton, G. C., Liu, Y., Cooper, C. B., Salvati, M. E., Qiao, J. X., Wang, T. C., Adam, L. P., Taylor, D. S., Chen, A. Y. A., Yin, X., Seethala, R., Peterson, T. L. et al. (2008). Bioorg. Med. Chem. Lett.18, 2640–2644. [PubMed]
  • Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett.16, 1859–1863. [PubMed]
  • Moore, J. L., Taylor, S. M. & Soloshonok, V. A. (2005). Arkivoc(vi), 287–292.
  • Rida, S. M., Ashour, F. A., El-Hawash, S. A. M., ElSemary, M. M., Badr, M. H. & Shalaby, M. A. (2005). Eur. J. Med. Chem.40, 949–959. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vinodkumar, R., Vaidya, S. D., Kumar, B. V. S., Bhise, U. N., Bhirud, S. B. & Mashelkar, U. C. (2008). Eur. J. Med. Chem.43, 986–995. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography