PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1495.
Published online 2008 July 16. doi:  10.1107/S1600536808021466
PMCID: PMC2962125

A new polymorph of N-(prop-2-yn­yl)tricyclo­[3.3.1.13,7]decane-1-carbox­amide

Abstract

The alkynyl bond of the title compound, C14H19NO, has a length of 1.170 (5) Å. The amide function shows a trans conformation with respect to the carbonyl group characterized by the torsion angle O—C—N—H of −176 (2)°. There is an inter­molecular N—H(...)O hydrogen bond between the amide function and the carbonyl group. In addition, weak inter­molecular hydrogen bonds stabilize the crystal structure. A comparison with a polymorphic structure shows conformational differences with regard to the orientation of the carbonyl groups with respect to the adamantyl group [O—C—C—C = 96.2 (3)° in the title compound and 123.7 (2)° in the polymorph] and the orientations of the propargyl groups in relation to the carbonyl groups [O—C—C—C = −87.7 (3) and −58.7 (2)°, respectively].

Related literature

For the monoclinic polymorph, see: Hashmi et al. (2004 [triangle]). For gold catalysis research, see: Hashmi (2003 [triangle], 2004 [triangle], 2005 [triangle], 2007 [triangle]); Hashmi & Hutchings (2006 [triangle]); Hashmi, Frost & Bats (2000 [triangle]); Hashmi, Schwarz et al. (2000 [triangle]); Hashmi et al. (2006 [triangle]). For the synthesis of heterocyclic compounds, see: Milton et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1495-scheme1.jpg

Experimental

Crystal data

  • C14H19NO
  • M r = 217.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1495-efi1.jpg
  • a = 9.862 (2) Å
  • b = 28.095 (5) Å
  • c = 8.664 (3) Å
  • V = 2400.4 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.9 × 0.4 × 0.1 mm

Data collection

  • Nicolet P3 diffractometer
  • Absorption correction: none
  • 13418 measured reflections
  • 1853 independent reflections
  • 1442 reflections with I > 2σ(I)
  • R int = 0.084
  • 3 standard reflections every 50 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.130
  • S = 1.09
  • 1853 reflections
  • 150 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: P3/PC Software (Siemens, 1991 [triangle]); cell refinement: P3/PC Software; data reduction: XDISK in SHELXTL-Plus (Sheldrick, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021466/bt2731sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021466/bt2731Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Initiated by our early work on gold-catalyzed additions of nucleophiles to allenes (Hashmi et al., 2000a; Hashmi et al., 2000b) and alkynes (Hashmi & Frost et al., 2000) the investigation of the synthetic potential of propargylic carboxamides in gold-catalyzed reactions (Hashmi, 2007) revealed that they can be excellent precursors for the formation of oxazoles (Hashmi, Weyrauch, Frey & Bats, 2004) and alkylidene oxazolines (Hashmi & Rudolph et al., 2006) in highly selective reactions under mild conditions. As one of the substrates with bulky, sterically demanding substiutents which documented the broad scope of the reaction, the title compound was prepared.

The title compound (Fig. 1) crystallizes with one molecule in the asymmetric unit of the space group Iba2. The alkynyl bond was clearly identified by the distance of 1.170 (5) Å between the carbon atoms C1 and C2. As expected, the N1—H1A amide function shows a trans conformation concerning to the carbonyl group C4=O1 indicated by the torsion angle O1—C4—N1—H1A of -176 (2)°. The crystal packing (Fig. 4) is stabilized by a number of intermolecular hydrogen bond contacts (Fig. 2). A strong intermolecular hydrogen bond works between the amide function N1—H1A as donor and the oxygen O1 of the carbonyl group as acceptor with a H1A···O1 distance of 2.16 Å and an angle N1—H1A···O1 of 161°. The oxygen O1 of the carbonyl function is also an acceptor in more weak interactions, where the alkynyl moiety C1—H1 and the methylen group C10—H10B of the adamantyl system works as donors. The H1···O1 distance is 2.41 Å and the H10B···O1 distance is 2.57 Å respectively. The center of the alkynyl bond X1 works also as acceptor of weak hydrogen bond interactions, where the methylen group of the propargyl moiety C3—H3A and C3—H3B are the donors. The distances of H3A···X1 and H3B···X1 are both 2.93 Å. X1 is also the acceptor of an weak interaction including the methylen group C6—H6A of the adamantyl moiety with a distance H6A···X1 of 2.81 Å (see Table). Hashmi & Weyrauch et al., 2004, reported about a polymorphic structure (further abbreviated as Mol.A) of the title compound crystallized in space group C2/c, which was also crystallized by slow diffusion of petrol ether into a solution of dichloromethane. To get more insight of structural differences the carbon atoms of the adamantyl moieties of both structures were superimposed yielded in an optimal fit with a weighted r.m.s. of 0.0061 Å (Fig. 3, bold bonds shows title compound). The orientations of the carbonyl functions C4=O1 in relation to the adamantyl moiety are quite different characterized by the torsion angle O1—C4—C5—C6 of 96.2 (3)° and 123.7 (2)° (Mol.A). The orientations of the propargyl groups in relation to the carbonyl functions differs also significant indicated by the Newman projection along the carbons C3 and C4 with torsion angles O1—C4—C3—C2 of -87.7 (3)° and -58.7 (2)° (Mol.A) respectively.

Experimental

The title compound was prepared by the reaction of adamantane-1-carboxylic acid chloride with propargyl amine in dichloromethane at 0–20 °C using a 2 mol% of 4-N,N-dimethylaminopyridine as a catalyst in 76% yield as described previously (Hashmi, Weyrauch, Frey & Bats, 2004). Crystals were grown by slow diffusion of petrol ether into a solution of dichloromethane.

Refinement

H atoms were located in difference fourier map, but refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H ranging from 0.93 to 0.98 Å. H1A of the amide function was refined free with individual displacement parameters, because of its relevance for the geometry of the hydrogen bond interaction.

Figures

Fig. 1.
Perspective view of the title compound with atom numbering. Displacement ellipsoids are at the 50% probability level.
Fig. 2.
Detailed view of the intermolecular hydrogen bond interactions. (X1A - X1D are the centers of the alkynyl bond)
Fig. 3.
Superposition plot of the title compound (bold bonds) and the formerly reported polymorphic structure (Mol. A, open bonds). For better insight plot without Hydrogen atoms.
Fig. 4.
Cell Plot of the title compound (bc-view, inclusive hydrogen atoms)

Crystal data

C14H19NOF000 = 944
Mr = 217.30Dx = 1.203 Mg m3
Orthorhombic, Iba2Mo Kα radiation λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 32 reflections
a = 9.862 (2) Åθ = 9–13º
b = 28.095 (5) ŵ = 0.08 mm1
c = 8.664 (3) ÅT = 293 (2) K
V = 2400.4 (10) Å3Plates, colourless
Z = 80.9 × 0.4 × 0.1 mm

Data collection

Nicolet P3 diffractometerRint = 0.084
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 2.2º
T = 293(2) Kh = −13→13
Wyckoff ccan scansk = −39→39
Absorption correction: nonel = −12→12
13418 measured reflections3 standard reflections
1853 independent reflections every 50 reflections
1442 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.0432P)2 + 1.5609P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1853 reflectionsΔρmax = 0.21 e Å3
150 parametersΔρmin = −0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0008 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1418 (2)0.17494 (8)0.6152 (3)0.0516 (6)
N10.0006 (3)0.18653 (8)0.8136 (3)0.0417 (5)
H1A−0.023 (3)0.1792 (9)0.906 (4)0.030 (8)*
C10.1177 (4)0.29834 (13)0.8851 (6)0.0648 (11)
H10.17460.32040.93220.078*
C20.0462 (3)0.27061 (10)0.8258 (5)0.0471 (7)
C3−0.0418 (3)0.23362 (9)0.7609 (4)0.0466 (7)
H3A−0.13480.23940.79230.056*
H3B−0.03800.23490.64910.056*
C40.1019 (3)0.16321 (9)0.7436 (3)0.0362 (6)
C50.1706 (2)0.12334 (9)0.8342 (3)0.0321 (5)
C60.2719 (3)0.14739 (9)0.9446 (4)0.0408 (7)
H6A0.33460.16690.88580.049*
H6B0.22330.16801.01550.049*
C70.3511 (3)0.10992 (10)1.0360 (4)0.0454 (7)
H70.41570.12581.10490.055*
C80.2518 (3)0.08042 (11)1.1315 (4)0.0464 (7)
H8A0.30100.05701.19160.056*
H8B0.20280.10091.20210.056*
C90.1523 (3)0.05549 (9)1.0236 (4)0.0441 (7)
H90.08890.03631.08470.053*
C100.0723 (3)0.09276 (9)0.9302 (4)0.0413 (6)
H10A0.00870.07680.86220.050*
H10B0.02130.11300.99990.050*
C110.2495 (3)0.09040 (11)0.7245 (4)0.0482 (8)
H11A0.18680.07480.65460.058*
H11B0.31240.10910.66330.058*
C120.3275 (3)0.05301 (11)0.8169 (4)0.0524 (8)
H120.37730.03230.74580.063*
C130.2292 (3)0.02307 (10)0.9121 (5)0.0527 (8)
H13A0.2788−0.00090.96960.063*
H13B0.16570.00700.84430.063*
C140.4276 (3)0.07773 (12)0.9248 (5)0.0538 (8)
H14A0.47840.05410.98240.065*
H14B0.49130.09650.86490.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0513 (12)0.0591 (13)0.0445 (12)0.0059 (10)0.0039 (11)0.0162 (11)
N10.0433 (12)0.0404 (11)0.0415 (14)0.0062 (11)0.0031 (12)0.0088 (12)
C10.0506 (17)0.0527 (18)0.091 (3)0.0030 (16)−0.006 (2)−0.008 (2)
C20.0398 (14)0.0402 (14)0.061 (2)0.0096 (12)0.0003 (16)0.0059 (15)
C30.0440 (15)0.0423 (14)0.0533 (19)0.0089 (12)−0.0061 (15)0.0083 (14)
C40.0355 (13)0.0356 (12)0.0376 (15)−0.0056 (10)−0.0048 (12)0.0012 (12)
C50.0320 (12)0.0327 (12)0.0316 (14)−0.0013 (9)0.0006 (11)0.0011 (11)
C60.0393 (14)0.0337 (12)0.0495 (18)−0.0075 (11)−0.0055 (14)0.0026 (13)
C70.0413 (15)0.0443 (14)0.0507 (18)−0.0048 (12)−0.0143 (15)0.0036 (15)
C80.0570 (18)0.0448 (15)0.0375 (16)0.0059 (13)−0.0032 (15)0.0103 (14)
C90.0437 (15)0.0325 (12)0.056 (2)−0.0045 (11)0.0028 (14)0.0126 (14)
C100.0340 (12)0.0351 (12)0.0550 (18)−0.0039 (10)0.0027 (14)0.0066 (14)
C110.0561 (18)0.0492 (17)0.0393 (18)0.0108 (14)0.0026 (15)−0.0028 (13)
C120.0593 (19)0.0477 (16)0.050 (2)0.0201 (14)0.0100 (17)−0.0022 (16)
C130.0624 (19)0.0313 (13)0.065 (2)0.0051 (13)−0.0091 (19)−0.0010 (15)
C140.0365 (14)0.0611 (18)0.064 (2)0.0086 (13)0.0026 (16)0.0153 (19)

Geometric parameters (Å, °)

O1—C41.225 (4)C8—C91.525 (4)
N1—C41.340 (4)C8—H8A0.9700
N1—C31.461 (3)C8—H8B0.9700
N1—H1A0.86 (3)C9—C131.529 (5)
C1—C21.170 (5)C9—C101.541 (4)
C1—H10.9300C9—H90.9800
C2—C31.466 (4)C10—H10A0.9700
C3—H3A0.9700C10—H10B0.9700
C3—H3B0.9700C11—C121.529 (4)
C4—C51.526 (4)C11—H11A0.9700
C5—C111.538 (4)C11—H11B0.9700
C5—C101.539 (4)C12—C131.526 (5)
C5—C61.540 (4)C12—C141.527 (5)
C6—C71.531 (4)C12—H120.9800
C6—H6A0.9700C13—H13A0.9700
C6—H6B0.9700C13—H13B0.9700
C7—C141.521 (5)C14—H14A0.9700
C7—C81.527 (4)C14—H14B0.9700
C7—H70.9800
C4—N1—C3121.0 (3)H8A—C8—H8B108.3
C4—N1—H1A120.7 (19)C8—C9—C13110.0 (3)
C3—N1—H1A115.4 (19)C8—C9—C10109.8 (2)
C2—C1—H1180.0C13—C9—C10109.1 (3)
C1—C2—C3175.9 (4)C8—C9—H9109.3
N1—C3—C2110.7 (2)C13—C9—H9109.3
N1—C3—H3A109.5C10—C9—H9109.3
C2—C3—H3A109.5C5—C10—C9109.9 (2)
N1—C3—H3B109.5C5—C10—H10A109.7
C2—C3—H3B109.5C9—C10—H10A109.7
H3A—C3—H3B108.1C5—C10—H10B109.7
O1—C4—N1121.3 (3)C9—C10—H10B109.7
O1—C4—C5121.5 (3)H10A—C10—H10B108.2
N1—C4—C5117.2 (2)C12—C11—C5110.1 (3)
C4—C5—C11110.4 (2)C12—C11—H11A109.6
C4—C5—C10114.1 (2)C5—C11—H11A109.6
C11—C5—C10108.5 (2)C12—C11—H11B109.6
C4—C5—C6106.6 (2)C5—C11—H11B109.6
C11—C5—C6108.7 (2)H11A—C11—H11B108.1
C10—C5—C6108.5 (2)C13—C12—C11110.0 (3)
C7—C6—C5110.5 (2)C13—C12—C14109.3 (3)
C7—C6—H6A109.5C11—C12—C14109.5 (3)
C5—C6—H6A109.5C13—C12—H12109.3
C7—C6—H6B109.5C11—C12—H12109.3
C5—C6—H6B109.5C14—C12—H12109.3
H6A—C6—H6B108.1C12—C13—C9109.1 (2)
C14—C7—C8109.8 (2)C12—C13—H13A109.9
C14—C7—C6109.5 (3)C9—C13—H13A109.9
C8—C7—C6109.0 (2)C12—C13—H13B109.9
C14—C7—H7109.5C9—C13—H13B109.9
C8—C7—H7109.5H13A—C13—H13B108.3
C6—C7—H7109.5C7—C14—C12109.7 (2)
C9—C8—C7109.3 (3)C7—C14—H14A109.7
C9—C8—H8A109.8C12—C14—H14A109.7
C7—C8—H8A109.8C7—C14—H14B109.7
C9—C8—H8B109.8C12—C14—H14B109.7
C7—C8—H8B109.8H14A—C14—H14B108.2
C4—N1—C3—C2−82.6 (4)C8—C9—C10—C559.7 (3)
C3—N1—C4—O1−16.5 (4)C13—C9—C10—C5−60.9 (3)
C3—N1—C4—C5160.2 (3)C4—C5—C11—C12175.3 (3)
O1—C4—C5—C11−21.6 (4)C10—C5—C11—C12−59.0 (3)
N1—C4—C5—C11161.8 (3)C6—C5—C11—C1258.8 (3)
O1—C4—C5—C10−144.0 (3)C5—C11—C12—C1360.0 (4)
N1—C4—C5—C1039.4 (3)C5—C11—C12—C14−60.2 (3)
O1—C4—C5—C696.2 (3)C11—C12—C13—C9−60.3 (4)
N1—C4—C5—C6−80.4 (3)C14—C12—C13—C960.0 (3)
C4—C5—C6—C7−177.4 (2)C8—C9—C13—C12−60.1 (3)
C11—C5—C6—C7−58.4 (3)C10—C9—C13—C1260.4 (3)
C10—C5—C6—C759.3 (3)C8—C7—C14—C1259.9 (3)
C5—C6—C7—C1459.4 (3)C6—C7—C14—C12−59.8 (3)
C5—C6—C7—C8−60.8 (3)C13—C12—C14—C7−60.2 (3)
C14—C7—C8—C9−59.3 (3)C11—C12—C14—C760.4 (3)
C6—C7—C8—C960.7 (3)O1—C4—C3—C2−87.7 (3)
C7—C8—C9—C1359.5 (3)C4—N1—C3—C2−82.6 (4)
C7—C8—C9—C10−60.5 (3)O1—C4—N1—H1A−176 (2)
C4—C5—C10—C9−176.9 (2)H1A—N1—C3—C278 (2)
C11—C5—C10—C959.6 (3)O1—C4—C5—C696.2 (3)
C6—C5—C10—C9−58.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86 (3)2.16 (4)2.984 (4)161 (3)
C1—H1···O1ii0.932.413.188 (5)141
C10—H10B···O1i0.972.573.515 (4)164
C3—H3A···X1iii0.972.933.833157
C3—H3B···X1iv0.972.933.813151
C6—H6A···X1v0.972.813.689151

Symmetry codes: (i) −x, y, z+1/2; (ii) −x+1/2, −y+1/2, z+1/2; (iii) x−1/2, y+1/2, z+1/2; (iv) −x, y, z−1/2; (v) x+1/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2731).

References

  • Hashmi, A. S. K. (2003). Gold Bull.36, 3–9.
  • Hashmi, A. S. K. (2004). Gold Bull.37, 51–65.
  • Hashmi, A. S. K. (2005). Angew. Chem. Int. Ed.44, 6690–6693.
  • Hashmi, A. S. K. (2007). Chem. Rev.107, 3180–3211. [PubMed]
  • Hashmi, A. S. K., Frost, T. M. & Bats, J. W. (2000). J. Am. Chem. Soc.122, 11553–11554.
  • Hashmi, A. S. K. & Hutchings, G. (2006). Angew. Chem. Int. Ed.45, 7896–7936. [PubMed]
  • Hashmi, A. S. K., Rudolph, M., Schymura, S., Visus, J. & Frey, W. (2006). Eur. J. Org. Chem. pp. 4905–4909.
  • Hashmi, A. S. K., Schwarz, L., Choi, J.-H. & Frost, T. M. (2000). Angew. Chem. Int. Ed. Engl.39, 2285–2288. [PubMed]
  • Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett.6, 4391–4394. [PubMed]
  • Milton, M. D., Inada, Y., Nishibayashi, Y. & Uemura, S. (2004). Chem. Commun. pp. 2712–2713. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1991). P3/PC Data Collection Software Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography