PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1493.
Published online 2008 July 16. doi:  10.1107/S1600536808021223
PMCID: PMC2962123

2-Chloro-N-(2,6-dichloro­phen­yl)benzamide

Abstract

In the structure of the title compound (N26DCP2CBA), C13H8Cl3NO, the conformations of N—H and C=O bonds in the amide group are trans to each other, similar to that observed in N-(2,6-dichloro­phen­yl)benzamide, 2-chloro-N-phenyl­benzamide, 2-chloro-N-(2-chloro­phen­yl)benzamide and 2-chloro-N-(2,3-dichloro­phen­yl)benzamide with similar bond parameters. Furthermore, the position of the amide O atom is syn to the ortho-chloro group in the benzoyl ring. The amide group makes a dihedral angle of 59.8 (1)° with the benzoyl ring, while the benzoyl and aniline rings make a dihedral angle of 8.1 (2)°. The mol­ecules are linked by N—H(...)O hydrogen bonds into infinite chains running along the b axis.

Related literature

For related literature, see Gowda et al. (2003 [triangle], 2007 [triangle], 2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1493-scheme1.jpg

Experimental

Crystal data

  • C13H8Cl3NO
  • M r = 300.55
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1493-efi1.jpg
  • a = 21.3949 (4) Å
  • b = 4.8159 (1) Å
  • c = 12.5036 (3) Å
  • V = 1288.32 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 295 (2) K
  • 0.42 × 0.16 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer
  • Absorption correction: analytical [CrysAlis RED; Oxford Diffraction, 2007 [triangle] (based on Clark & Reid, 1995 [triangle])] T min = 0.802, T max = 0.951
  • 26609 measured reflections
  • 1306 independent reflections
  • 1216 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.073
  • S = 1.08
  • 1306 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1167 Friedel pairs
  • Flack parameter: 0.14 (8)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021223/bx2156sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021223/bx2156Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(2,6-dichlorophenyl)- benzamide (N26DCP2CBA) has been determined to explore the effect of substituents on the structures of benzanilides (Gowda et al., 2003; 2007; 2008a,b). The N—H and C═O bonds in the amide group of N26DCP2CBA are trans to each other (Fig.1), similar to that observed in N-(2,6-dichlorophenyl)benzamide (Gowda et al., 2008b), 2-chloro-N-(phenyl)-benzamide (NP2CBA)(Gowda et al., 2003), 2-chloro-N-(2-chlorophenyl)-benzamide (Gowda et al., 2007), 2-chloro-N-(2,3-dichlorophenyl)benzamide (Gowda et al., 2008a), 2-chloro-N-(3,5-dichlorophenyl)-benzamide (N35DCP2CBA) (Gowda et al., 2008a) and other benzanilides. Further, the conformation of the amide oxygen in N26DCP2CBA is syn to the ortho-chloro group in the benzoyl ring, similar to that observed in NP2CBA. The amide group –NHCO– makes dihedral angle of 59.8 (1)° with the benzoyl ring, while the benzoyl and aniline rings make dihedral angle of 8.1 (2)°), compared to the corresponding dihedral angles of 63.1 (12)° and 32.1 (2)°) observed in N35DCP2CBA.

Part of the crystal structure of N26DCP2CBA with infinite molecular chains running along the b axis of the crystal is shown in Fig. 2. The chains are generated by N—H···O(i) hydrogen bonds (Table 1). Symmetry operation (i):x,y + 1,z.

Experimental

The title compound was prepared according to the method of Gowda et al., (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution at room temperature.

Refinement

All H atoms were placed in calculated positions and subsequently treated as riding with C–H distance of 0.93Å and N–H distance of 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of the title compound with infinite molecular chains running along the b axis of the crystal. The chains are generated by N—H···O(i) hydrogen bonds. Symmetry operation (i):x,y + 1,z.

Crystal data

C13H8Cl3NOF000 = 608
Mr = 300.55Dx = 1.55 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 13276 reflections
a = 21.3949 (4) Åθ = 3.3–29.5º
b = 4.81590 (10) ŵ = 0.70 mm1
c = 12.5036 (3) ÅT = 295 (2) K
V = 1288.32 (5) Å3Rod, colourless
Z = 40.42 × 0.16 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur System diffractometer1306 independent reflections
Monochromator: graphite1216 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.030
T = 295(2) Kθmax = 26.0º
ω scans with κ offsetsθmin = 5.3º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2007)h = −26→26
Tmin = 0.802, Tmax = 0.951k = −5→5
26609 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027  w = 1/[σ2(Fo2) + (0.044P)2 + 0.2234P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.21 e Å3
1306 reflectionsΔρmin = −0.21 e Å3
163 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1167 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.14 (8)
Secondary atom site location: difference Fourier map

Special details

Experimental. CrysAlis RED, Oxford Diffraction (2007). Analytical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.36930 (11)0.1547 (5)0.4253 (2)0.0334 (5)
C20.42847 (11)0.2602 (5)0.4746 (2)0.0357 (6)
C30.48616 (13)0.1593 (6)0.4430 (3)0.0429 (7)
C40.54063 (13)0.2457 (7)0.4927 (3)0.0579 (9)
H40.57910.17560.47090.069*
C50.53744 (18)0.4341 (8)0.5737 (4)0.0687 (12)
H50.57390.49150.60750.082*
C60.48090 (19)0.5403 (8)0.6060 (3)0.0634 (11)
H60.47920.66950.66120.076*
C70.42636 (16)0.4543 (6)0.5560 (3)0.0481 (8)
H70.38810.52750.57750.058*
C80.27485 (10)0.2660 (5)0.3315 (2)0.0334 (5)
C90.27249 (14)0.1003 (6)0.2411 (3)0.0470 (7)
C100.21674 (15)0.0145 (9)0.1969 (3)0.0609 (10)
H100.2164−0.09820.13650.073*
C110.16185 (15)0.0976 (7)0.2434 (3)0.0592 (9)
H110.1240.03880.21440.071*
C120.16174 (12)0.2649 (7)0.3313 (3)0.0491 (7)
H120.12420.3220.36180.059*
C130.21824 (12)0.3488 (6)0.3745 (3)0.0389 (6)
N10.33226 (9)0.3444 (4)0.37870 (19)0.0337 (5)
H1N0.34360.51570.37750.04*
O10.35555 (10)−0.0906 (4)0.4302 (2)0.0510 (6)
Cl10.49200 (4)−0.07634 (17)0.33767 (8)0.0588 (2)
Cl20.34152 (4)0.0008 (2)0.17928 (9)0.0734 (3)
Cl30.21723 (4)0.5602 (2)0.48512 (8)0.0670 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0284 (12)0.0289 (12)0.0429 (14)0.0002 (10)0.0006 (11)0.0002 (11)
C20.0316 (12)0.0281 (12)0.0473 (15)−0.0025 (10)−0.0049 (12)0.0079 (11)
C30.0363 (14)0.0375 (15)0.0547 (18)−0.0027 (11)−0.0038 (13)0.0107 (13)
C40.0299 (14)0.0577 (19)0.086 (2)−0.0036 (13)−0.0126 (16)0.018 (2)
C50.051 (2)0.060 (2)0.095 (3)−0.0124 (17)−0.039 (2)0.010 (2)
C60.073 (2)0.051 (2)0.067 (3)−0.0040 (18)−0.032 (2)−0.0082 (17)
C70.0501 (18)0.0384 (15)0.0558 (19)0.0023 (13)−0.0142 (15)−0.0031 (14)
C80.0289 (11)0.0280 (11)0.0435 (14)−0.0012 (9)−0.0038 (11)−0.0033 (12)
C90.0329 (14)0.0548 (17)0.0532 (18)0.0029 (12)−0.0013 (12)−0.0146 (15)
C100.0459 (18)0.073 (2)0.064 (2)−0.0028 (15)−0.0125 (17)−0.0282 (19)
C110.0336 (16)0.067 (2)0.077 (2)−0.0063 (14)−0.0159 (15)−0.0159 (19)
C120.0267 (12)0.0532 (17)0.068 (2)0.0012 (12)−0.0004 (14)−0.0072 (18)
C130.0347 (13)0.0348 (14)0.0471 (16)−0.0002 (10)−0.0009 (11)−0.0076 (12)
N10.0284 (10)0.0227 (9)0.0498 (13)−0.0009 (8)−0.0055 (9)−0.0042 (9)
O10.0432 (11)0.0228 (9)0.0870 (17)−0.0051 (8)−0.0100 (11)0.0027 (10)
Cl10.0449 (4)0.0632 (5)0.0683 (5)0.0093 (3)0.0088 (4)−0.0048 (4)
Cl20.0437 (4)0.1065 (7)0.0700 (6)0.0068 (4)0.0051 (4)−0.0439 (5)
Cl30.0447 (4)0.0801 (6)0.0762 (6)0.0001 (4)0.0058 (4)−0.0413 (5)

Geometric parameters (Å, °)

C1—O11.219 (3)C8—C131.384 (4)
C1—N11.343 (3)C8—C91.385 (4)
C1—C21.497 (3)C8—N11.414 (3)
C2—C71.383 (4)C9—C101.378 (4)
C2—C31.384 (4)C9—Cl21.734 (3)
C3—C41.385 (4)C10—C111.370 (5)
C3—Cl11.743 (4)C10—H100.93
C4—C51.361 (6)C11—C121.363 (5)
C4—H40.93C11—H110.93
C5—C61.374 (6)C12—C131.384 (4)
C5—H50.93C12—H120.93
C6—C71.387 (5)C13—Cl31.717 (3)
C6—H60.93N1—H1N0.86
C7—H70.93
O1—C1—N1122.6 (2)C13—C8—C9116.8 (2)
O1—C1—C2120.9 (2)C13—C8—N1121.4 (3)
N1—C1—C2116.5 (2)C9—C8—N1121.7 (2)
C7—C2—C3118.5 (3)C10—C9—C8122.1 (3)
C7—C2—C1120.3 (3)C10—C9—Cl2118.4 (3)
C3—C2—C1121.1 (3)C8—C9—Cl2119.5 (2)
C2—C3—C4121.1 (3)C11—C10—C9119.0 (3)
C2—C3—Cl1120.6 (2)C11—C10—H10120.5
C4—C3—Cl1118.3 (3)C9—C10—H10120.5
C5—C4—C3119.5 (3)C12—C11—C10121.1 (3)
C5—C4—H4120.3C12—C11—H11119.5
C3—C4—H4120.3C10—C11—H11119.5
C4—C5—C6120.7 (3)C11—C12—C13119.1 (3)
C4—C5—H5119.6C11—C12—H12120.5
C6—C5—H5119.6C13—C12—H12120.5
C5—C6—C7119.8 (3)C8—C13—C12121.9 (3)
C5—C6—H6120.1C8—C13—Cl3119.6 (2)
C7—C6—H6120.1C12—C13—Cl3118.5 (2)
C2—C7—C6120.4 (3)C1—N1—C8120.8 (2)
C2—C7—H7119.8C1—N1—H1N119.6
C6—C7—H7119.8C8—N1—H1N119.6
O1—C1—C2—C7−118.3 (3)C13—C8—C9—Cl2177.2 (2)
N1—C1—C2—C760.1 (3)N1—C8—C9—Cl2−3.5 (4)
O1—C1—C2—C359.2 (4)C8—C9—C10—C110.6 (6)
N1—C1—C2—C3−122.4 (3)Cl2—C9—C10—C11−178.3 (3)
C7—C2—C3—C41.2 (4)C9—C10—C11—C120.7 (7)
C1—C2—C3—C4−176.4 (3)C10—C11—C12—C13−0.7 (6)
C7—C2—C3—Cl1−177.7 (2)C9—C8—C13—C121.7 (5)
C1—C2—C3—Cl14.7 (4)N1—C8—C13—C12−177.6 (3)
C2—C3—C4—C5−0.3 (5)C9—C8—C13—Cl3−178.7 (2)
Cl1—C3—C4—C5178.6 (3)N1—C8—C13—Cl32.0 (4)
C3—C4—C5—C6−0.4 (6)C11—C12—C13—C8−0.5 (5)
C4—C5—C6—C70.3 (6)C11—C12—C13—Cl3179.9 (3)
C3—C2—C7—C6−1.3 (4)O1—C1—N1—C8−0.5 (4)
C1—C2—C7—C6176.2 (3)C2—C1—N1—C8−178.9 (3)
C5—C6—C7—C20.6 (5)C13—C8—N1—C1112.2 (3)
C13—C8—C9—C10−1.7 (5)C9—C8—N1—C1−67.0 (4)
N1—C8—C9—C10177.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.022.840 (3)158

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2156).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1342. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography