PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1490.
Published online 2008 July 16. doi:  10.1107/S1600536808020837
PMCID: PMC2962120

2′-Methyl-2′-nitro-1′-phenyl-2′,3′,5′,6′,7′,7a’-hexa­hydro­spiro­[indoline-3,3′-1′H-pyrrolizin]-2-one

Abstract

The title compound, C21H21N3O3, was synthesized by a multi-component 1,3-dipolar cyclo­addition of azomethine ylide, derived from isatin and proline by a deca­rboxylative route, and (E)-1-phenyl-2-nitro­propene. In the mol­ecule, the spiro junction links a planar oxindole ring and a pyrrolidine ring in an envelope conformation. The mol­ecular packing is stabilized by an inter­molecular N—H(...)N inter­action of the oxindole and pyrrolizidine rings.

Related literature

For related literature, see: Daly et al. (1986 [triangle]); Grigg & Sridharan (1993 [triangle]); Padwa (1984 [triangle]); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005 [triangle]); Usha, Selvanayagam, Velmurugan, Ravikumar & Raghunathan (2005 [triangle]); Waldmann (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1490-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O3
  • M r = 363.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1490-efi1.jpg
  • a = 7.8524 (16) Å
  • b = 25.656 (6) Å
  • c = 9.1767 (19) Å
  • β = 110.489 (4)°
  • V = 1731.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 120 (2) K
  • 0.21 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.980, T max = 0.989
  • 16064 measured reflections
  • 3773 independent reflections
  • 2183 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.102
  • S = 1.01
  • 3773 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020837/om2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020837/om2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the financial support of Mazandaran University of the Islamic Republic of Iran.

supplementary crystallographic information

Comment

Multicomponent 1,3-dipolar cycloaddition reactions are considered to be one of the most useful processes for the construction of five-membered heterocyclic ring systems (Padwa, 1984; Grigg & Sridharan, 1993). These strategies offer significant advantages over more traditional approaches, allowing the construction of complex molecular architectures from easily available starting materials in a single synthetic operation without the need for isolation of intermediates. Particularly, the chemistry of the azomethine ylide has gained significance in recent years for the construction of nitrogen containing five-membered heterocycles, which are often the central ring systems of numerous natural products (Daly et al., 1986; Waldmann, 1995). In contrast to similar compounds (Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005; Usha, Selvanayagam, Velmurugan, Ravikumar & Raghunathan, 2005); Waldmann (1995)), in which the carbon atom bearing nitro group is bonded to the pyrrolidine ring, in the title compound it is bonded to the oxindole ring (Fig. 1). In the crystal structure, N—H···H hydrogen bonds link neighboring molecules. Molecules (Fig. 2) are also stacked in a side by side fashion along the c axis through π···π interaction and are further linked by a few intermolecular C—H···π interactions,

Refinement

The hydrogen atom of the NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. H(N) atom was refined in isotropic approximation in riding model, the H(C) atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ni), 1.2 Ueq(Ci) or 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the (CH or CH2) and CH3 carbon atoms to which the corresponding H atoms are bonded.

Figures

Fig. 1.
The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the molecules, viewed down the c axis.

Crystal data

C21H21N3O3F000 = 768
Mr = 363.41Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 792 reflections
a = 7.8524 (16) Åθ = 3–23º
b = 25.656 (6) ŵ = 0.10 mm1
c = 9.1767 (19) ÅT = 120 (2) K
β = 110.489 (4)ºPrism, colorless
V = 1731.8 (6) Å30.21 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3773 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.064
T = 120(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.980, Tmax = 0.989k = −32→32
16064 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.01P)2 + 1.6P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3773 reflectionsΔρmax = 0.25 e Å3
245 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. A mixture of isatin (0.147 g, 1 mmol), proline (0.115 g, 1 mmol), and (E)-1-phenyl-2-nitropropene (0.163 g, 1 mmol) in ethanol (10 ml) was stirred at reflux for 1 h. After completion of the reaction, as indicated by TLC, to the solution was added water (25 ml), and the precipitated solid was separated by filtration. The pure cycloadduct was obtained by recrystallization from ethanol.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.1573 (3)0.19274 (7)0.7966 (2)0.0215 (4)
C20.1056 (3)0.17387 (9)0.6367 (3)0.0210 (5)
C30.2848 (3)0.14420 (9)0.6478 (3)0.0218 (5)
C40.3236 (3)0.11281 (9)0.8003 (3)0.0209 (5)
H4A0.22950.08590.77960.025*
C50.2810 (3)0.15438 (9)0.9046 (3)0.0212 (5)
H5A0.39440.17220.96450.025*
C60.1843 (3)0.13826 (9)1.0155 (3)0.0250 (6)
H6A0.27020.12841.11660.030*
H6B0.10050.10970.97350.030*
C70.0836 (3)0.18844 (9)1.0247 (3)0.0273 (6)
H7A−0.01400.18171.06400.033*
H7B0.16570.21411.09060.033*
C80.0098 (3)0.20643 (10)0.8562 (3)0.0250 (6)
H8A−0.10200.18830.79860.030*
H8B−0.01290.24370.84950.030*
C90.4441 (3)0.17830 (9)0.6496 (3)0.0245 (6)
H9A0.54370.15660.64960.037*
H9B0.48120.19960.74130.037*
H9C0.40790.20020.55890.037*
C100.5061 (3)0.08576 (9)0.8734 (3)0.0208 (5)
C110.5235 (3)0.03378 (10)0.8389 (3)0.0285 (6)
H11A0.42850.01730.76220.034*
C120.6799 (4)0.00634 (10)0.9170 (3)0.0333 (6)
H12A0.6905−0.02820.89020.040*
C130.8199 (3)0.02934 (10)1.0338 (3)0.0298 (6)
H13A0.92260.01011.08940.036*
C140.8070 (3)0.08119 (10)1.0682 (3)0.0280 (6)
H14A0.90180.09721.14650.034*
C150.6529 (3)0.10927 (10)0.9861 (3)0.0254 (6)
H15A0.64750.14461.00680.030*
N20.2395 (3)0.11023 (8)0.5039 (2)0.0241 (5)
O10.2495 (2)0.06314 (7)0.5158 (2)0.0346 (4)
O20.1929 (2)0.13377 (7)0.37859 (19)0.0310 (4)
N1'−0.1068 (3)0.21391 (8)0.4167 (2)0.0247 (5)
H1'−0.16470.23770.35350.030*
C2'0.0582 (3)0.22165 (9)0.5263 (3)0.0245 (5)
O2'0.1511 (2)0.26105 (6)0.54370 (19)0.0298 (4)
C3A−0.0662 (3)0.14082 (9)0.5689 (3)0.0215 (5)
C4'−0.1202 (3)0.09354 (9)0.6109 (3)0.0248 (6)
H4D−0.04550.07610.69890.030*
C5'−0.2865 (3)0.07228 (10)0.5209 (3)0.0271 (6)
H5D−0.32240.04030.54820.032*
C6'−0.3983 (3)0.09824 (10)0.3915 (3)0.0266 (6)
H6D−0.50860.08330.33160.032*
C7'−0.3494 (3)0.14616 (10)0.3490 (3)0.0252 (6)
H7D−0.42590.16410.26280.030*
C7A−0.1828 (3)0.16639 (9)0.4391 (3)0.0231 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0226 (11)0.0248 (11)0.0180 (10)0.0022 (9)0.0084 (9)−0.0003 (8)
C20.0219 (13)0.0213 (13)0.0192 (12)0.0010 (10)0.0066 (10)−0.0011 (10)
C30.0227 (13)0.0227 (13)0.0187 (12)−0.0006 (10)0.0058 (10)−0.0016 (10)
C40.0227 (13)0.0201 (12)0.0196 (12)−0.0022 (10)0.0072 (10)−0.0008 (10)
C50.0206 (12)0.0239 (13)0.0191 (12)0.0012 (10)0.0069 (10)−0.0007 (10)
C60.0292 (14)0.0265 (14)0.0219 (13)0.0027 (11)0.0122 (11)0.0021 (11)
C70.0309 (14)0.0290 (14)0.0252 (14)0.0025 (11)0.0136 (12)0.0001 (11)
C80.0219 (13)0.0284 (14)0.0257 (13)0.0032 (11)0.0098 (11)−0.0006 (11)
C90.0234 (13)0.0292 (14)0.0227 (13)−0.0025 (11)0.0101 (11)−0.0005 (11)
C100.0244 (13)0.0231 (13)0.0178 (12)0.0008 (10)0.0110 (10)0.0038 (10)
C110.0307 (15)0.0270 (14)0.0261 (14)0.0025 (11)0.0078 (12)−0.0007 (11)
C120.0392 (16)0.0280 (15)0.0337 (15)0.0072 (13)0.0141 (13)−0.0019 (12)
C130.0281 (14)0.0364 (15)0.0283 (14)0.0096 (12)0.0141 (12)0.0089 (12)
C140.0236 (14)0.0354 (15)0.0255 (13)0.0004 (11)0.0093 (11)0.0008 (12)
C150.0267 (14)0.0265 (13)0.0253 (13)0.0019 (11)0.0119 (11)0.0012 (11)
N20.0232 (11)0.0297 (12)0.0201 (11)0.0006 (9)0.0084 (9)−0.0007 (10)
O10.0474 (12)0.0247 (10)0.0324 (10)0.0009 (9)0.0149 (9)−0.0043 (8)
O20.0330 (10)0.0415 (11)0.0188 (9)0.0023 (8)0.0093 (8)0.0017 (8)
N1'0.0249 (11)0.0259 (11)0.0214 (11)0.0018 (9)0.0057 (9)0.0058 (9)
C2'0.0284 (14)0.0247 (13)0.0220 (13)0.0012 (11)0.0107 (11)−0.0031 (11)
O2'0.0319 (10)0.0242 (10)0.0318 (10)−0.0025 (8)0.0093 (8)0.0024 (8)
C3A0.0217 (13)0.0231 (13)0.0204 (12)0.0022 (10)0.0083 (10)−0.0025 (10)
C4'0.0262 (14)0.0244 (13)0.0240 (13)0.0048 (11)0.0090 (11)0.0017 (11)
C5'0.0278 (14)0.0259 (14)0.0298 (14)−0.0018 (11)0.0131 (12)−0.0023 (11)
C6'0.0205 (13)0.0325 (15)0.0267 (14)−0.0033 (11)0.0082 (11)−0.0093 (11)
C7'0.0266 (14)0.0293 (14)0.0190 (12)0.0033 (11)0.0071 (11)−0.0006 (11)
C7A0.0276 (14)0.0232 (13)0.0200 (13)0.0012 (11)0.0102 (11)−0.0019 (10)

Geometric parameters (Å, °)

N1—C21.461 (3)C10—C111.388 (3)
N1—C81.486 (3)C11—C121.379 (3)
N1—C51.490 (3)C11—H11A0.9300
C2—C3A1.530 (3)C12—C131.372 (3)
C2—C2'1.550 (3)C12—H12A0.9300
C2—C31.571 (3)C13—C141.379 (3)
C3—N21.517 (3)C13—H13A0.9300
C3—C91.522 (3)C14—C151.383 (3)
C3—C41.550 (3)C14—H14A0.9300
C4—C101.521 (3)C15—H15A0.9300
C4—C51.546 (3)N2—O11.213 (2)
C4—H4A0.9800N2—O21.235 (2)
C5—C61.525 (3)N1'—C2'1.348 (3)
C5—H5A0.9800N1'—C7A1.404 (3)
C6—C71.528 (3)N1'—H1'0.8544
C6—H6A0.9700C2'—O2'1.224 (3)
C6—H6B0.9700C3A—C4'1.383 (3)
C7—C81.521 (3)C3A—C7A1.387 (3)
C7—H7A0.9700C4'—C5'1.389 (3)
C7—H7B0.9700C4'—H4D0.9300
C8—H8A0.9700C5'—C6'1.377 (3)
C8—H8B0.9700C5'—H5D0.9300
C9—H9A0.9600C6'—C7'1.384 (3)
C9—H9B0.9600C6'—H6D0.9300
C9—H9C0.9600C7'—C7A1.381 (3)
C10—C151.388 (3)C7'—H7D0.9300
C2—N1—C8118.04 (18)C3—C9—H9C109.5
C2—N1—C5109.64 (18)H9A—C9—H9C109.5
C8—N1—C5108.79 (17)H9B—C9—H9C109.5
N1—C2—C3A119.15 (19)C15—C10—C11117.7 (2)
N1—C2—C2'108.24 (18)C15—C10—C4122.6 (2)
C3A—C2—C2'101.33 (18)C11—C10—C4119.4 (2)
N1—C2—C399.68 (17)C12—C11—C10120.8 (2)
C3A—C2—C3113.59 (18)C12—C11—H11A119.6
C2'—C2—C3115.5 (2)C10—C11—H11A119.6
N2—C3—C9106.34 (19)C13—C12—C11120.7 (2)
N2—C3—C4113.56 (19)C13—C12—H12A119.6
C9—C3—C4112.82 (19)C11—C12—H12A119.6
N2—C3—C2106.86 (17)C12—C13—C14119.4 (2)
C9—C3—C2115.85 (19)C12—C13—H13A120.3
C4—C3—C2101.46 (18)C14—C13—H13A120.3
C10—C4—C5114.60 (18)C15—C14—C13119.9 (2)
C10—C4—C3119.50 (19)C15—C14—H14A120.1
C5—C4—C3100.59 (18)C13—C14—H14A120.1
C10—C4—H4A107.1C14—C15—C10121.3 (2)
C5—C4—H4A107.1C14—C15—H15A119.4
C3—C4—H4A107.1C10—C15—H15A119.4
N1—C5—C6105.17 (18)O1—N2—O2124.0 (2)
N1—C5—C4106.01 (17)O1—N2—C3120.35 (19)
C6—C5—C4119.5 (2)O2—N2—C3115.60 (19)
N1—C5—H5A108.6C2'—N1'—C7A111.4 (2)
C6—C5—H5A108.6C2'—N1'—H1'123.1
C4—C5—H5A108.6C7A—N1'—H1'124.5
C5—C6—C7101.31 (19)O2'—C2'—N1'126.3 (2)
C5—C6—H6A111.5O2'—C2'—C2124.9 (2)
C7—C6—H6A111.5N1'—C2'—C2108.6 (2)
C5—C6—H6B111.5C4'—C3A—C7A118.7 (2)
C7—C6—H6B111.5C4'—C3A—C2133.3 (2)
H6A—C6—H6B109.3C7A—C3A—C2108.1 (2)
C8—C7—C6102.72 (19)C3A—C4'—C5'119.6 (2)
C8—C7—H7A111.2C3A—C4'—H4D120.2
C6—C7—H7A111.2C5'—C4'—H4D120.2
C8—C7—H7B111.2C6'—C5'—C4'120.4 (2)
C6—C7—H7B111.2C6'—C5'—H5D119.8
H7A—C7—H7B109.1C4'—C5'—H5D119.8
N1—C8—C7103.52 (18)C5'—C6'—C7'121.1 (2)
N1—C8—H8A111.1C5'—C6'—H6D119.4
C7—C8—H8A111.1C7'—C6'—H6D119.4
N1—C8—H8B111.1C7A—C7'—C6'117.6 (2)
C7—C8—H8B111.1C7A—C7'—H7D121.2
H8A—C8—H8B109.0C6'—C7'—H7D121.2
C3—C9—H9A109.5C7'—C7A—C3A122.6 (2)
C3—C9—H9B109.5C7'—C7A—N1'126.9 (2)
H9A—C9—H9B109.5C3A—C7A—N1'110.5 (2)
C8—N1—C2—C3A−34.1 (3)C4—C10—C11—C12−172.1 (2)
C5—N1—C2—C3A91.2 (2)C10—C11—C12—C131.9 (4)
C8—N1—C2—C2'80.8 (2)C11—C12—C13—C14−3.0 (4)
C5—N1—C2—C2'−153.89 (18)C12—C13—C14—C150.7 (4)
C8—N1—C2—C3−158.11 (19)C13—C14—C15—C102.9 (4)
C5—N1—C2—C3−32.8 (2)C11—C10—C15—C14−3.9 (3)
N1—C2—C3—N2165.61 (17)C4—C10—C15—C14169.5 (2)
C3A—C2—C3—N237.8 (2)C9—C3—N2—O1119.1 (2)
C2'—C2—C3—N2−78.7 (2)C4—C3—N2—O1−5.6 (3)
N1—C2—C3—C9−76.1 (2)C2—C3—N2—O1−116.6 (2)
C3A—C2—C3—C9156.02 (19)C9—C3—N2—O2−61.1 (2)
C2'—C2—C3—C939.5 (3)C4—C3—N2—O2174.21 (19)
N1—C2—C3—C446.4 (2)C2—C3—N2—O263.2 (2)
C3A—C2—C3—C4−81.4 (2)C7A—N1'—C2'—O2'−174.3 (2)
C2'—C2—C3—C4162.10 (19)C7A—N1'—C2'—C21.2 (3)
N2—C3—C4—C1077.2 (3)N1—C2—C2'—O2'47.5 (3)
C9—C3—C4—C10−43.9 (3)C3A—C2—C2'—O2'173.6 (2)
C2—C3—C4—C10−168.54 (19)C3—C2—C2'—O2'−63.2 (3)
N2—C3—C4—C5−156.50 (18)N1—C2—C2'—N1'−128.0 (2)
C9—C3—C4—C582.4 (2)C3A—C2—C2'—N1'−1.9 (2)
C2—C3—C4—C5−42.2 (2)C3—C2—C2'—N1'121.3 (2)
C2—N1—C5—C6−120.7 (2)N1—C2—C3A—C4'−59.9 (4)
C8—N1—C5—C69.7 (2)C2'—C2—C3A—C4'−178.4 (3)
C2—N1—C5—C46.8 (2)C3—C2—C3A—C4'57.1 (3)
C8—N1—C5—C4137.19 (19)N1—C2—C3A—C7A120.6 (2)
C10—C4—C5—N1152.38 (19)C2'—C2—C3A—C7A2.1 (2)
C3—C4—C5—N122.8 (2)C3—C2—C3A—C7A−122.5 (2)
C10—C4—C5—C6−89.2 (3)C7A—C3A—C4'—C5'1.6 (3)
C3—C4—C5—C6141.2 (2)C2—C3A—C4'—C5'−177.9 (2)
N1—C5—C6—C7−32.2 (2)C3A—C4'—C5'—C6'−0.7 (4)
C4—C5—C6—C7−151.0 (2)C4'—C5'—C6'—C7'−0.7 (4)
C5—C6—C7—C842.7 (2)C5'—C6'—C7'—C7A1.3 (4)
C2—N1—C8—C7142.8 (2)C6'—C7'—C7A—C3A−0.4 (4)
C5—N1—C8—C717.1 (2)C6'—C7'—C7A—N1'179.8 (2)
C6—C7—C8—N1−37.2 (2)C4'—C3A—C7A—C7'−1.0 (4)
C5—C4—C10—C15−27.0 (3)C2—C3A—C7A—C7'178.6 (2)
C3—C4—C10—C1592.4 (3)C4'—C3A—C7A—N1'178.8 (2)
C5—C4—C10—C11146.3 (2)C2—C3A—C7A—N1'−1.5 (3)
C3—C4—C10—C11−94.2 (3)C2'—N1'—C7A—C7'−179.9 (2)
C15—C10—C11—C121.5 (4)C2'—N1'—C7A—C3A0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1'—H1'···N1i0.852.212.992 (3)151

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2246).

References

  • Bruker (2007). SMART and SAINT Bruker AXS, Madison, Wisconsin, USA.
  • Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod.46, 210–???
  • Grigg, R. & Sridharan, V. (1993). Advances in Cycloaddition, edited by D. P. Curran, Vol. 3, p. 161. London: Jai.
  • Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3312–o3314.
  • Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3299–o3301.
  • Waldmann, H. (1995). Synlett, pp. 133–141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography