PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1494.
Published online 2008 July 16. doi:  10.1107/S1600536808021235
PMCID: PMC2962118

2-Methyl-N-(4-methyl­phen­yl)benzamide

Abstract

The conformations of the N—H and C=O bonds in the structure of the title compound, C15H15NO, are trans to each other. Furthermore, the position of the amide O atom is syn to the ortho-methyl group in the benzoyl ring. The central amide group is tilted at an angle of 59.96 (11)° to the benzoyl ring, and the benzoyl and aniline rings form a dihedral angle of 81.44 (5)°. N—H(...)O hydrogen bonds link the mol­ecules into infinite chains running along the c axis.

Related literature

For related literature, see Gowda et al. (2003 [triangle], 2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1494-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1494-efi1.jpg
  • a = 40.6634 (12) Å
  • b = 7.1770 (2) Å
  • c = 8.9418 (2) Å
  • β = 96.173 (3)°
  • V = 2594.45 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.33 × 0.13 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.985, T max = 0.994
  • 25372 measured reflections
  • 2486 independent reflections
  • 1594 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.121
  • S = 1.02
  • 2486 reflections
  • 159 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021235/tk2283sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021235/tk2283Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds (Interreg IIIA) for financial support in the purchase of the diffractometer.

supplementary crystallographic information

Comment

As part of a study of exploring the effect of substituents on the structures of benzanilides (Gowda et al., 2003; 2008a,b,c), inthe present work, the structure of 2-methyl-N-(4-methylphenyl)benzamide (I) has been determined. The N—H and C=O bonds in the amide group of (I) are trans to each other (Fig. 1), similar to what is observed in N-(4-methylphenyl)benzamide (N4MPBA) (Gowda et al., 2008c), 2-methyl-N-(phenyl)-benzamide (NP2MBA) (Gowda et al., 2008a), and 2-methyl-N-(3-methylphenyl)-benzamide (N3MP2MBA) (Gowda et al., 2008b). Further, the conformation of the amide oxygen in (I) is syn to the ortho-methyl group in the benzoyl ring, similar to what is observed in NP2MBA and N3MP2MBA (Gowda et al., 2008a, b).

The central amide group is tilted to the benzoyl ring at the angle of 59.96 (11)°. The two rings (benzoyl and aniline) make a dihedral angle of 81.44 (5)°. N—H···O hydrogen bonds link the molecules into infinite chains running along the c-axis of the crystal (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). Prism-like colourless single crystals were obtained by slow evaporation from an ethanol solution of (I) (0.5 g in about 40 ml of ethanol) at room temperature.

Refinement

All C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H = 0.93- 0.96 Å. The H atoms of C15-methyl group were finally refined as orientationally disordered using the AFIX 127 command in SHELXL-97 (Sheldrick, 2008). The amide-H atom was refined with the N–H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(C,N) and 1.5Ueq (C-methyl). The displacement parameters of three C-atoms in aniline ring were restrained using the DELU command with standard deviation of 0.003.

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme and displacement ellipsoids at the 30% probability level.
Fig. 2.
Part of crystal structure of (I) viewed down the b-axis. Hydrogen bonds N1–H1N···O1(i) give rise to infinite molecular chains running along the c axis. Symmetry code: (i) x,-y + 1,z - 1/2. H atoms not involved in hydrogen ...

Crystal data

C15H15NOF000 = 960
Mr = 225.28Dx = 1.153 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6446 reflections
a = 40.6634 (12) Åθ = 3.0–29.2º
b = 7.1770 (2) ŵ = 0.07 mm1
c = 8.9418 (2) ÅT = 295 (2) K
β = 96.173 (3)ºPrism, colourless
V = 2594.45 (12) Å30.33 × 0.13 × 0.10 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur System diffractometer2486 independent reflections
Monochromator: graphite1594 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.049
T = 295(2) Kθmax = 25.9º
ω scans with κ offsetsθmin = 5.4º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −49→49
Tmin = 0.985, Tmax = 0.994k = −8→8
25372 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121  w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0615P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2486 reflectionsΔρmax = 0.13 e Å3
159 parametersΔρmin = −0.11 e Å3
4 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.38556 (4)0.3947 (2)0.51508 (15)0.0490 (4)
C20.41020 (4)0.29352 (18)0.43275 (14)0.0460 (4)
C30.44366 (4)0.2966 (2)0.48505 (16)0.0556 (4)
C40.46488 (4)0.1922 (2)0.4075 (2)0.0683 (5)
H40.48740.1930.43970.082*
C50.45356 (5)0.0877 (2)0.2846 (2)0.0744 (5)
H50.46830.01680.2360.089*
C60.42084 (5)0.0867 (2)0.23294 (19)0.0712 (5)
H60.41320.01660.14880.085*
C70.39921 (4)0.1908 (2)0.30672 (15)0.0577 (4)
H70.37690.1920.27120.069*
C80.34387 (4)0.6436 (2)0.48652 (14)0.0508 (4)
C90.32161 (4)0.5851 (2)0.58239 (17)0.0654 (5)
H90.32190.46260.61630.078*
C100.29882 (4)0.7110 (3)0.6277 (2)0.0785 (5)
H100.28390.67060.69260.094*
C110.29747 (4)0.8930 (3)0.5804 (2)0.0752 (5)
C120.32004 (5)0.9467 (3)0.4855 (2)0.0799 (5)
H120.31991.06940.4520.096*
C130.34283 (4)0.8252 (3)0.43868 (18)0.0697 (5)
H130.35770.86640.37390.084*
C140.45688 (5)0.4126 (3)0.6189 (2)0.0896 (6)
H14A0.48060.41320.62730.134*
H14B0.44960.36060.70870.134*
H14C0.44880.5380.6060.134*
C150.27185 (5)1.0262 (4)0.6292 (3)0.1144 (9)
H15A0.25670.95940.68480.172*0.5
H15B0.25991.08210.5420.172*0.5
H15C0.28261.12170.69170.172*0.5
H15D0.27611.14940.59420.172*0.5
H15E0.27291.02670.7370.172*0.5
H15F0.25020.98710.58730.172*0.5
N10.36770 (3)0.52332 (18)0.43453 (13)0.0545 (4)
H1N0.3735 (4)0.552 (2)0.3467 (15)0.065*
O10.38239 (3)0.35884 (16)0.64635 (11)0.0718 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0637 (9)0.0501 (9)0.0351 (7)−0.0025 (7)0.0132 (6)−0.0003 (6)
C20.0611 (9)0.0411 (8)0.0374 (7)0.0016 (7)0.0133 (6)0.0030 (6)
C30.0646 (10)0.0491 (9)0.0537 (9)0.0001 (8)0.0091 (7)−0.0005 (7)
C40.0587 (10)0.0634 (11)0.0843 (12)0.0030 (9)0.0147 (9)0.0005 (9)
C50.0779 (13)0.0625 (12)0.0871 (12)0.0077 (10)0.0293 (10)−0.0164 (10)
C60.0846 (13)0.0660 (12)0.0653 (10)−0.0002 (10)0.0184 (9)−0.0243 (9)
C70.0645 (10)0.0597 (10)0.0500 (8)−0.0019 (8)0.0107 (7)−0.0079 (7)
C80.0518 (9)0.0636 (10)0.0376 (7)0.0047 (8)0.0082 (6)−0.0023 (7)
C90.0613 (10)0.0722 (11)0.0655 (9)−0.0040 (8)0.0205 (8)−0.0039 (8)
C100.0576 (10)0.1063 (15)0.0759 (11)−0.0022 (10)0.0265 (8)−0.0135 (10)
C110.0625 (11)0.0948 (13)0.0667 (11)0.0212 (10)−0.0003 (9)−0.0204 (10)
C120.0887 (13)0.0752 (13)0.0761 (11)0.0250 (11)0.0104 (10)0.0027 (10)
C130.0773 (12)0.0708 (12)0.0641 (10)0.0136 (10)0.0214 (8)0.0106 (9)
C140.0823 (13)0.0965 (15)0.0864 (12)−0.0020 (11)−0.0075 (10)−0.0278 (11)
C150.0884 (15)0.146 (2)0.1076 (15)0.0512 (15)0.0038 (12)−0.0354 (15)
N10.0660 (8)0.0652 (9)0.0352 (6)0.0115 (7)0.0185 (6)0.0062 (6)
O10.1041 (9)0.0757 (8)0.0394 (6)0.0222 (7)0.0253 (5)0.0099 (5)

Geometric parameters (Å, °)

C1—O11.2219 (15)C9—H90.93
C1—N11.3362 (18)C10—C111.372 (3)
C1—C21.4941 (19)C10—H100.93
C2—C71.380 (2)C11—C121.370 (3)
C2—C31.390 (2)C11—C151.513 (3)
C3—C41.384 (2)C12—C131.371 (2)
C3—C141.509 (2)C12—H120.93
C4—C51.369 (2)C13—H130.93
C4—H40.93C14—H14A0.96
C5—C61.361 (2)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C71.375 (2)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—H70.93C15—H15C0.96
C8—C131.372 (2)C15—H15D0.96
C8—C91.377 (2)C15—H15E0.96
C8—N11.4132 (19)C15—H15F0.96
C9—C101.386 (2)N1—H1N0.868 (13)
O1—C1—N1123.78 (13)C13—C12—H12119
O1—C1—C2121.10 (13)C12—C13—C8120.57 (17)
N1—C1—C2115.12 (11)C12—C13—H13119.7
C7—C2—C3120.17 (13)C8—C13—H13119.7
C7—C2—C1119.10 (13)C3—C14—H14A109.5
C3—C2—C1120.69 (12)C3—C14—H14B109.5
C4—C3—C2117.58 (14)H14A—C14—H14B109.5
C4—C3—C14120.54 (15)C3—C14—H14C109.5
C2—C3—C14121.86 (14)H14A—C14—H14C109.5
C5—C4—C3121.66 (16)H14B—C14—H14C109.5
C5—C4—H4119.2C11—C15—H15A109.5
C3—C4—H4119.2C11—C15—H15B109.5
C6—C5—C4120.51 (15)H15A—C15—H15B109.5
C6—C5—H5119.7C11—C15—H15C109.5
C4—C5—H5119.7H15A—C15—H15C109.5
C5—C6—C7119.13 (15)H15B—C15—H15C109.5
C5—C6—H6120.4C11—C15—H15D109.5
C7—C6—H6120.4H15A—C15—H15D141.1
C6—C7—C2120.93 (15)H15B—C15—H15D56.3
C6—C7—H7119.5H15C—C15—H15D56.3
C2—C7—H7119.5C11—C15—H15E109.5
C13—C8—C9118.91 (15)H15A—C15—H15E56.3
C13—C8—N1118.50 (14)H15B—C15—H15E141.1
C9—C8—N1122.59 (15)H15C—C15—H15E56.3
C8—C9—C10119.25 (17)H15D—C15—H15E109.5
C8—C9—H9120.4C11—C15—H15F109.5
C10—C9—H9120.4H15A—C15—H15F56.3
C11—C10—C9122.42 (17)H15B—C15—H15F56.3
C11—C10—H10118.8H15C—C15—H15F141.1
C9—C10—H10118.8H15D—C15—H15F109.5
C12—C11—C10116.86 (16)H15E—C15—H15F109.5
C12—C11—C15121.9 (2)C1—N1—C8126.63 (12)
C10—C11—C15121.3 (2)C1—N1—H1N117.8 (11)
C11—C12—C13122.00 (18)C8—N1—H1N114.6 (11)
C11—C12—H12119
O1—C1—C2—C7118.96 (16)C13—C8—C9—C100.0 (2)
N1—C1—C2—C7−60.69 (18)N1—C8—C9—C10−179.59 (14)
O1—C1—C2—C3−58.66 (19)C8—C9—C10—C110.1 (3)
N1—C1—C2—C3121.68 (15)C9—C10—C11—C12−0.4 (3)
C7—C2—C3—C4−0.8 (2)C9—C10—C11—C15178.70 (16)
C1—C2—C3—C4176.82 (14)C10—C11—C12—C130.4 (3)
C7—C2—C3—C14177.70 (15)C15—C11—C12—C13−178.61 (17)
C1—C2—C3—C14−4.7 (2)C11—C12—C13—C8−0.3 (3)
C2—C3—C4—C5−0.7 (2)C9—C8—C13—C120.0 (2)
C14—C3—C4—C5−179.15 (16)N1—C8—C13—C12179.69 (14)
C3—C4—C5—C61.4 (3)O1—C1—N1—C83.2 (2)
C4—C5—C6—C7−0.6 (3)C2—C1—N1—C8−177.12 (14)
C5—C6—C7—C2−0.8 (2)C13—C8—N1—C1139.57 (16)
C3—C2—C7—C61.5 (2)C9—C8—N1—C1−40.8 (2)
C1—C2—C7—C6−176.10 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.868 (13)1.973 (13)2.8361 (15)172.9 (15)

Symmetry codes: (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2283).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008c). Acta Cryst. E64, o83.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography