PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1482.
Published online 2008 July 12. doi:  10.1107/S1600536808021077
PMCID: PMC2962112

(Z)-1-(3-Nitro­phen­yl)-2-(4-nitro­phen­yl)ethene

Abstract

In the mol­ecule of the title compound, C14H10N2O4, the dihedral angle formed by the benzene rings is 53.66 (5)°. In the crystal structure, mol­ecules are linked into chains parallel to the [0An external file that holds a picture, illustration, etc.
Object name is e-64-o1482-efi1.jpg1] direction by inter­molecular C—H(...)O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Boonlaksiri et al. (2000 [triangle]); Papper & Likhtenshtein (2001 [triangle]); Soto Bustmante et al. (1995 [triangle]). For the crystal structure of a related isomer, see: Chen & Cao (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1482-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O4
  • M r = 270.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1482-efi2.jpg
  • a = 7.2995 (13) Å
  • b = 8.0561 (11) Å
  • c = 11.831 (2) Å
  • α = 78.291 (7)°
  • β = 85.102 (7)°
  • γ = 67.536 (7)°
  • V = 629.53 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 (2) K
  • 0.50 × 0.24 × 0.19 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.946, T max = 0.981
  • 4608 measured reflections
  • 2902 independent reflections
  • 2009 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.138
  • S = 1.03
  • 2902 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021077/rz2231sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021077/rz2231Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the National Natural Science Foundation of China (NSFC) (No. 20772028) and the Natural Science Foundation of Hunan Province (NSFH) (No. 06JJ2002)

supplementary crystallographic information

Comment

Recently, stilbene derivatives have attracted considerable attention from chemists and biologists because of their non-linear optical properties (Soto Bustmante et al., 1995; Papper & Likhtenshtein, 2001) and biological activities (Boonlaksiri et al., 2000). The crystal structure of the related isomer (Z)-1,2-bis(4-nitrophenyl)ethene has been previously reported by our group (Chen & Cao, 2007). We report here the crystal structure of the title compound (Fig. 1), a cis-stilbene derivative.

In the title compound, the C4—C7—C8 and C9—C8—C7 bond angles are 130.11 (16) and 129.92 (15)°, respectively. They are larger than the idealized value of 120° expected for sp2 hybrid orbitals due to the comparatively strong stereo hindrance between the two aryl groups. The dihedral angle between the two benzene rings is 53.66 (5)°. The nitro groups at C1 and C11 are slightly twisted out of the plane of the attached benzene rings forming dihedral angles of 7.92 (14) and 9.22 (10)°, respectively. In the crystal structure (Fig. 2), there is non-classical intermolecular C—H···O hydrogen bond (Table 1) linking molecules into chains running parallel to the [0 -1 1] direction.

Experimental

The title compound was synthesized by the Wittig reaction. Triphenyl(p-nitrobenzyl)phosphonium chloride (0.01 mol), which was obtained by reacting 4-nitrobenzyl chlorine with triphenyl phosphine, and 3-nitrobenzaldehyde (0.01 mol) were dissolved in CH2Cl2 (15 ml), then a 50% NaOH solution (4 ml) was titrated into the mixture. The mixture was refluxed for 40 min at 45–50 °C. After cooling to room temperature, water (15 ml) was added and the mixture was extracted with ether (20 ml). The organic layer was washed with water and dried with anhydrous sodium sulfate, then it was filtered and concentrated. The resulting yellow solution was collected and purified by column chromatography on silica gel using petroleum ether and chloroform (10:1 v/v) as eluent (yield: 8.6%). Crystals of the title compound suitable for X-ray analysis were grown by slow evaporation of an ethanol solution. 1HNMR (CDCl3)(400 MHz; TMS p.p.m.), δ(p.p.m.): 6.83–6.90 (m, 2H, –C═C–), 7.31–7.54 (m, 4H, Ar), 8.13–8.17 (m, 4H, Ar).

Refinement

The hydrogen atoms were generated geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound showing intermolecular hydrogen bonds (dashed lines) forming chains parallel to the [0 -1 1] direction.

Crystal data

C14H10N2O4Z = 2
Mr = 270.24F000 = 280
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.2995 (13) ÅCell parameters from 1175 reflections
b = 8.0561 (11) Åθ = 3.5–27.2º
c = 11.831 (2) ŵ = 0.11 mm1
α = 78.291 (7)ºT = 296 (2) K
β = 85.102 (7)ºBlock, yellow
γ = 67.536 (7)º0.50 × 0.24 × 0.19 mm
V = 629.53 (18) Å3

Data collection

Bruker SMART APEXII CCD diffractometer2902 independent reflections
Radiation source: fine-focus sealed tube2009 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 296(2) Kθmax = 27.9º
ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −9→9
Tmin = 0.946, Tmax = 0.981k = −10→9
4608 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047  w = 1/[σ2(Fo2) + (0.066P)2 + 0.0698P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.24 e Å3
2902 reflectionsΔρmin = −0.19 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C110.4027 (2)0.3521 (2)0.95493 (13)0.0408 (4)
C100.5246 (2)0.2712 (2)0.87050 (13)0.0407 (4)
H10A0.49410.31900.79300.049*
N20.2245 (2)0.51528 (19)0.92062 (12)0.0491 (4)
O40.1303 (2)0.59945 (18)0.99507 (11)0.0625 (4)
C90.6945 (2)0.1168 (2)0.90224 (13)0.0418 (4)
C140.7294 (3)0.0475 (2)1.01961 (14)0.0491 (4)
H14A0.8396−0.05811.04240.059*
C40.8254 (2)0.2702 (2)0.64805 (13)0.0445 (4)
C10.7410 (2)0.6180 (2)0.52136 (13)0.0437 (4)
N10.7019 (2)0.8008 (2)0.45317 (13)0.0553 (4)
C120.4397 (3)0.2862 (2)1.07097 (14)0.0509 (4)
H12A0.35520.34481.12620.061*
O20.7283 (2)0.91400 (19)0.49721 (13)0.0734 (4)
O30.1784 (2)0.5610 (2)0.81952 (12)0.0804 (5)
C30.8289 (3)0.4109 (2)0.69887 (14)0.0518 (4)
H3A0.85980.38680.77670.062*
C60.7387 (3)0.4823 (2)0.46765 (14)0.0490 (4)
H6A0.70890.50710.38960.059*
C50.7812 (2)0.3098 (2)0.53140 (14)0.0485 (4)
H5A0.78030.21740.49570.058*
C20.7876 (3)0.5846 (2)0.63620 (14)0.0509 (4)
H2A0.79110.67730.67070.061*
C130.6048 (3)0.1315 (3)1.10274 (14)0.0547 (5)
H13A0.63260.08341.18050.066*
C80.8307 (3)0.0184 (2)0.81795 (15)0.0511 (4)
H8A0.8927−0.10700.84290.061*
C70.8788 (3)0.0810 (2)0.71159 (15)0.0531 (4)
H7A0.9588−0.00850.67090.064*
O10.6446 (3)0.8324 (2)0.35477 (12)0.0854 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C110.0452 (9)0.0352 (8)0.0444 (8)−0.0183 (7)0.0008 (6)−0.0066 (6)
C100.0452 (8)0.0378 (8)0.0383 (7)−0.0167 (7)−0.0026 (6)−0.0025 (6)
N20.0481 (8)0.0430 (8)0.0556 (8)−0.0150 (6)0.0023 (6)−0.0129 (7)
O40.0606 (8)0.0543 (8)0.0711 (8)−0.0164 (6)0.0168 (6)−0.0256 (6)
C90.0439 (9)0.0350 (8)0.0457 (8)−0.0163 (7)−0.0029 (6)−0.0018 (6)
C140.0525 (10)0.0419 (9)0.0503 (9)−0.0207 (8)−0.0091 (7)0.0066 (7)
C40.0398 (8)0.0452 (9)0.0452 (8)−0.0129 (7)0.0074 (6)−0.0104 (7)
C10.0399 (8)0.0440 (9)0.0449 (8)−0.0156 (7)0.0068 (6)−0.0060 (7)
N10.0540 (9)0.0489 (9)0.0581 (9)−0.0181 (7)0.0067 (7)−0.0047 (7)
C120.0675 (11)0.0484 (10)0.0420 (8)−0.0291 (9)0.0087 (8)−0.0086 (7)
O20.0851 (11)0.0496 (8)0.0885 (10)−0.0295 (7)0.0047 (8)−0.0130 (7)
O30.0746 (10)0.0741 (10)0.0590 (8)0.0134 (8)−0.0155 (7)−0.0145 (7)
C30.0642 (11)0.0569 (11)0.0373 (8)−0.0261 (9)0.0041 (7)−0.0105 (7)
C60.0498 (10)0.0544 (10)0.0416 (8)−0.0181 (8)−0.0002 (7)−0.0095 (7)
C50.0512 (10)0.0495 (10)0.0476 (9)−0.0185 (8)0.0046 (7)−0.0180 (7)
C20.0624 (11)0.0497 (10)0.0462 (9)−0.0260 (8)0.0092 (7)−0.0157 (7)
C130.0726 (12)0.0543 (10)0.0384 (8)−0.0311 (9)−0.0056 (8)0.0053 (7)
C80.0503 (10)0.0353 (8)0.0586 (10)−0.0082 (7)−0.0026 (8)−0.0035 (7)
C70.0526 (10)0.0427 (9)0.0556 (10)−0.0085 (8)0.0078 (8)−0.0129 (8)
O10.1193 (14)0.0700 (10)0.0582 (9)−0.0343 (9)−0.0165 (8)0.0116 (7)

Geometric parameters (Å, °)

C11—C101.372 (2)C1—N11.462 (2)
C11—C121.377 (2)N1—O11.2150 (19)
C11—N21.467 (2)N1—O21.218 (2)
C10—C91.392 (2)C12—C131.374 (3)
C10—H10A0.9300C12—H12A0.9300
N2—O31.2143 (18)C3—C21.376 (2)
N2—O41.2209 (17)C3—H3A0.9300
C9—C141.393 (2)C6—C51.371 (2)
C9—C81.470 (2)C6—H6A0.9300
C14—C131.378 (3)C5—H5A0.9300
C14—H14A0.9300C2—H2A0.9300
C4—C51.389 (2)C13—H13A0.9300
C4—C31.397 (2)C8—C71.328 (2)
C4—C71.473 (2)C8—H8A0.9300
C1—C21.376 (2)C7—H7A0.9300
C1—C61.378 (2)
C10—C11—C12122.86 (15)C13—C12—C11118.13 (16)
C10—C11—N2118.83 (13)C13—C12—H12A120.9
C12—C11—N2118.31 (15)C11—C12—H12A120.9
C11—C10—C9119.22 (14)C2—C3—C4121.34 (15)
C11—C10—H10A120.4C2—C3—H3A119.3
C9—C10—H10A120.4C4—C3—H3A119.3
O3—N2—O4123.14 (15)C5—C6—C1118.73 (15)
O3—N2—C11118.50 (14)C5—C6—H6A120.6
O4—N2—C11118.35 (14)C1—C6—H6A120.6
C10—C9—C14117.92 (15)C6—C5—C4121.50 (15)
C10—C9—C8122.99 (14)C6—C5—H5A119.2
C14—C9—C8118.99 (15)C4—C5—H5A119.2
C13—C14—C9121.71 (16)C3—C2—C1118.52 (16)
C13—C14—H14A119.1C3—C2—H2A120.7
C9—C14—H14A119.1C1—C2—H2A120.7
C5—C4—C3117.99 (15)C12—C13—C14120.13 (15)
C5—C4—C7119.46 (15)C12—C13—H13A119.9
C3—C4—C7122.43 (15)C14—C13—H13A119.9
C2—C1—C6121.91 (15)C7—C8—C9129.92 (15)
C2—C1—N1119.00 (15)C7—C8—H8A115.0
C6—C1—N1119.03 (15)C9—C8—H8A115.0
O1—N1—O2123.13 (16)C8—C7—C4130.11 (16)
O1—N1—C1118.13 (16)C8—C7—H7A114.9
O2—N1—C1118.75 (15)C4—C7—H7A114.9
C12—C11—C10—C9−0.7 (2)C7—C4—C3—C2176.81 (16)
N2—C11—C10—C9179.75 (13)C2—C1—C6—C51.0 (3)
C10—C11—N2—O38.4 (2)N1—C1—C6—C5178.16 (14)
C12—C11—N2—O3−171.23 (16)C1—C6—C5—C40.2 (3)
C10—C11—N2—O4−171.07 (14)C3—C4—C5—C6−1.1 (2)
C12—C11—N2—O49.3 (2)C7—C4—C5—C6−177.24 (16)
C11—C10—C9—C142.1 (2)C4—C3—C2—C10.4 (3)
C11—C10—C9—C8178.34 (14)C6—C1—C2—C3−1.3 (3)
C10—C9—C14—C13−2.3 (2)N1—C1—C2—C3−178.45 (16)
C8—C9—C14—C13−178.65 (16)C11—C12—C13—C140.6 (3)
C2—C1—N1—O1−173.84 (17)C9—C14—C13—C120.9 (3)
C6—C1—N1—O18.9 (2)C10—C9—C8—C732.4 (3)
C2—C1—N1—O26.3 (2)C14—C9—C8—C7−151.46 (19)
C6—C1—N1—O2−170.93 (15)C9—C8—C7—C46.1 (3)
C10—C11—C12—C13−0.8 (3)C5—C4—C7—C8−140.7 (2)
N2—C11—C12—C13178.83 (14)C3—C4—C7—C843.3 (3)
C5—C4—C3—C20.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.563.388 (2)149

Symmetry codes: (i) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2231).

References

  • Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M. & &Thebtaranonth, Y. (2000). Phytochemistry, 54, 415–417. [PubMed]
  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, C. & Cao, C. (2007). Acta Cryst. E63, o3999–o4000.
  • Papper, V. & Likhtenshtein, G. I. (2001). J. Photochem. Photobiol. A, 140, 39–52.
  • Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soto Bustamante, E. A., Hanemann, T., Haase, W., Svoboda, I. & Fuess, H. (1995). Acta Cryst. C51, 2192–2196.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography