PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1479.
Published online 2008 July 12. doi:  10.1107/S1600536808021028
PMCID: PMC2962109

1,1′,5,5′-Tetra­methyl-2,2′-diphenyl-4,4′-[p-phenyl­enebis(methyl­idynenitrilo)]di-1H-pyrazol-3(2H)-one

Abstract

In the centrosymmetric title compound, C30H28N6O2, the dihedral angles between the anti­pyrine ring and the terminal phenyl and central benzene rings are 50.55 (10) and 14.62 (9)°, respectively. Some short inter­molecular C—H(...)O inter­actions may help to establish the packing. An intramolecular C—H(...)O hydrogen bond is also present.

Related literature

For related structures, see: Guo et al. (2007 [triangle]); Selvakumar et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1479-scheme1.jpg

Experimental

Crystal data

  • C30H28N6O2
  • M r = 504.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1479-efi1.jpg
  • a = 6.0710 (2) Å
  • b = 22.2948 (7) Å
  • c = 9.8712 (3) Å
  • β = 95.147 (2)°
  • V = 1330.70 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 292 (2) K
  • 0.18 × 0.10 × 0.09 mm

Data collection

  • Bruker APEX2 CCD diffractometer
  • Absorption correction: none
  • 9162 measured reflections
  • 3034 independent reflections
  • 1545 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.141
  • S = 1.03
  • 3034 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021028/hb2742sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021028/hb2742Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Jian Dong Fan for collecting the data and Wei Huang for giving us a lot of help.

supplementary crystallographic information

Comment

Recently, some new Schiff bases of 4-aminoantipyrine have been reported (Guo et al., 2007; Selvakumar et al., 2007). We herein report the crystal structure of the related title compound, (I).

The complete molecule of (I) is generated by inversion and its bond lengths and angles are within normal ranges (Allen et al., 1987). The maximum deviation from the mean plane for the antipyrine ring (N1/N2/C7—C9) is 0.039 (2)Å for N2. The dihedral angles between the mean planes of the antipyrine ring and the terminal and central benzene rings are 50.55 (10)° and 14.62 (9)°, respectively.

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) lead to chains of molecules (Fig. 2).

Experimental

The title compound was synthesized according to the literature method (Selvakumar et al., 2007). Orange plates of (I) were obtained by slow evaporation of a dichloromethane solution at 292 K.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level for the non-hydrogen atoms. Atoms with the suffix a are generated by the symmetry operation (2-x, 1-y, 1-z).
Fig. 2.
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C30H28N6O2F000 = 532
Mr = 504.58Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 6.0710 (2) Åθ = 2.3–22.5º
b = 22.2948 (7) ŵ = 0.08 mm1
c = 9.8712 (3) ÅT = 292 (2) K
β = 95.147 (2)ºPlate, orange
V = 1330.70 (7) Å30.18 × 0.10 × 0.09 mm
Z = 2

Data collection

Bruker APEX2 CCD diffractometer1545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Monochromator: graphiteθmax = 27.5º
T = 292(2) Kθmin = 1.8º
ω scansh = −7→7
Absorption correction: nonek = −28→17
9162 measured reflectionsl = −12→9
3034 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.141  w = 1/[σ2(Fo2) + (0.0656P)2 + 0.0153P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3034 reflectionsΔρmax = 0.12 e Å3
174 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5949 (3)0.12139 (11)0.32324 (19)0.0767 (6)
H10.54830.14110.24270.092*
C20.6689 (3)0.06296 (12)0.3206 (2)0.0898 (7)
H20.66960.04280.23820.108*
C30.7414 (4)0.03451 (11)0.4398 (3)0.0976 (7)
H30.7902−0.00500.43790.117*
C40.7420 (4)0.06412 (12)0.5614 (2)0.0936 (7)
H40.79590.04500.64120.112*
C50.6643 (3)0.12151 (11)0.56657 (19)0.0777 (6)
H50.66080.14100.64970.093*
C60.5907 (3)0.15033 (9)0.44679 (17)0.0638 (5)
C70.6507 (3)0.25841 (8)0.49729 (18)0.0680 (5)
C80.5528 (3)0.31031 (9)0.42952 (16)0.0657 (5)
C90.3701 (3)0.29191 (11)0.34882 (16)0.0677 (5)
C100.2076 (3)0.32926 (10)0.26424 (18)0.0837 (6)
H10A0.19990.31580.17150.126*
H10B0.25360.37050.26890.126*
H10C0.06460.32560.29780.126*
C110.1418 (3)0.19847 (10)0.3420 (2)0.0868 (6)
H11A0.06850.20430.42320.130*
H11B0.16950.15650.33000.130*
H11C0.04970.21330.26500.130*
C120.8174 (3)0.38194 (9)0.49480 (17)0.0709 (5)
H120.89870.35170.54070.085*
C130.9078 (3)0.44231 (9)0.49655 (17)0.0647 (5)
C140.7891 (3)0.49092 (10)0.44065 (18)0.0758 (6)
H140.64640.48520.40000.091*
C150.8790 (3)0.54686 (9)0.44463 (19)0.0782 (6)
H150.79570.57870.40700.094*
N10.5147 (2)0.21053 (8)0.45312 (14)0.0699 (5)
N20.3520 (2)0.23112 (8)0.35370 (14)0.0709 (5)
N30.6298 (2)0.36905 (8)0.43221 (14)0.0692 (4)
O10.8196 (2)0.25210 (6)0.57570 (14)0.0871 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0660 (11)0.1017 (18)0.0610 (13)−0.0126 (11)−0.0015 (9)−0.0058 (11)
C20.0811 (14)0.1034 (19)0.0843 (16)−0.0086 (13)0.0044 (12)−0.0195 (14)
C30.0867 (15)0.0909 (17)0.113 (2)−0.0014 (12)−0.0011 (14)−0.0023 (16)
C40.0888 (15)0.107 (2)0.0824 (17)0.0020 (13)−0.0072 (12)0.0115 (14)
C50.0653 (11)0.1053 (18)0.0605 (13)−0.0029 (11)−0.0064 (9)−0.0020 (11)
C60.0466 (9)0.0866 (15)0.0563 (11)−0.0086 (9)−0.0051 (8)−0.0048 (10)
C70.0526 (9)0.0930 (15)0.0554 (11)−0.0021 (9)−0.0110 (8)−0.0130 (10)
C80.0527 (9)0.0910 (15)0.0509 (10)0.0064 (10)−0.0094 (8)−0.0077 (9)
C90.0487 (9)0.1015 (17)0.0505 (10)0.0041 (10)−0.0086 (8)−0.0064 (10)
C100.0628 (11)0.1145 (17)0.0696 (13)0.0125 (10)−0.0170 (9)−0.0040 (11)
C110.0511 (10)0.1288 (18)0.0764 (13)−0.0119 (10)−0.0170 (9)−0.0014 (12)
C120.0620 (11)0.0919 (15)0.0562 (11)0.0073 (10)−0.0099 (9)−0.0055 (10)
C130.0590 (10)0.0832 (14)0.0497 (10)0.0020 (9)−0.0070 (8)−0.0066 (9)
C140.0555 (10)0.0959 (17)0.0716 (12)0.0021 (10)−0.0187 (9)−0.0014 (11)
C150.0643 (11)0.0872 (16)0.0781 (13)0.0062 (11)−0.0210 (10)0.0021 (11)
N10.0542 (8)0.0945 (13)0.0571 (9)0.0002 (8)−0.0174 (7)−0.0081 (8)
N20.0477 (8)0.1039 (14)0.0570 (9)0.0000 (8)−0.0175 (7)−0.0055 (8)
N30.0579 (9)0.0914 (13)0.0557 (9)0.0025 (8)−0.0085 (7)−0.0079 (8)
O10.0706 (8)0.0991 (11)0.0832 (9)0.0021 (7)−0.0401 (7)−0.0085 (7)

Geometric parameters (Å, °)

C1—C21.379 (3)C9—C101.488 (2)
C1—C61.382 (2)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—C31.373 (3)C10—H10C0.9600
C2—H20.9300C11—N21.464 (2)
C3—C41.370 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.366 (3)C11—H11C0.9600
C4—H40.9300C12—N31.279 (2)
C5—C61.384 (2)C12—C131.453 (3)
C5—H50.9300C12—H120.9300
C6—N11.422 (2)C13—C141.388 (2)
C7—O11.2360 (19)C13—C15i1.391 (2)
C7—N11.395 (2)C14—C151.361 (2)
C7—C81.438 (2)C14—H140.9300
C8—C91.369 (2)C15—C13i1.391 (2)
C8—N31.390 (2)C15—H150.9300
C9—N21.361 (2)N1—N21.4056 (17)
C2—C1—C6119.3 (2)H10A—C10—H10B109.5
C2—C1—H1120.4C9—C10—H10C109.5
C6—C1—H1120.4H10A—C10—H10C109.5
C3—C2—C1120.0 (2)H10B—C10—H10C109.5
C3—C2—H2120.0N2—C11—H11A109.5
C1—C2—H2120.0N2—C11—H11B109.5
C4—C3—C2120.2 (2)H11A—C11—H11B109.5
C4—C3—H3119.9N2—C11—H11C109.5
C2—C3—H3119.9H11A—C11—H11C109.5
C5—C4—C3120.7 (2)H11B—C11—H11C109.5
C5—C4—H4119.7N3—C12—C13122.21 (17)
C3—C4—H4119.7N3—C12—H12118.9
C4—C5—C6119.3 (2)C13—C12—H12118.9
C4—C5—H5120.4C14—C13—C15i117.43 (17)
C6—C5—H5120.4C14—C13—C12122.44 (16)
C1—C6—C5120.5 (2)C15i—C13—C12120.13 (17)
C1—C6—N1120.73 (17)C15—C14—C13120.76 (16)
C5—C6—N1118.80 (17)C15—C14—H14119.6
O1—C7—N1122.90 (17)C13—C14—H14119.6
O1—C7—C8131.90 (17)C14—C15—C13i121.81 (17)
N1—C7—C8105.18 (15)C14—C15—H15119.1
C9—C8—N3123.15 (18)C13i—C15—H15119.1
C9—C8—C7108.00 (18)C7—N1—N2109.12 (15)
N3—C8—C7128.68 (15)C7—N1—C6123.38 (14)
N2—C9—C8109.98 (16)N2—N1—C6119.21 (14)
N2—C9—C10121.68 (16)C9—N2—N1107.21 (13)
C8—C9—C10128.3 (2)C9—N2—C11124.40 (15)
C9—C10—H10A109.5N1—N2—C11116.47 (16)
C9—C10—H10B109.5C12—N3—C8120.28 (16)
C6—C1—C2—C3−1.3 (3)C13—C14—C15—C13i0.4 (3)
C1—C2—C3—C4−0.5 (3)O1—C7—N1—N2−173.36 (16)
C2—C3—C4—C52.1 (3)C8—C7—N1—N24.94 (18)
C3—C4—C5—C6−2.0 (3)O1—C7—N1—C6−25.5 (3)
C2—C1—C6—C51.4 (3)C8—C7—N1—C6152.81 (15)
C2—C1—C6—N1−179.78 (16)C1—C6—N1—C7−114.23 (18)
C4—C5—C6—C10.3 (3)C5—C6—N1—C764.6 (2)
C4—C5—C6—N1−178.63 (17)C1—C6—N1—N230.6 (2)
O1—C7—C8—C9177.28 (19)C5—C6—N1—N2−150.49 (15)
N1—C7—C8—C9−0.80 (19)C8—C9—N2—N16.81 (18)
O1—C7—C8—N32.0 (3)C10—C9—N2—N1−173.58 (15)
N1—C7—C8—N3−176.11 (16)C8—C9—N2—C11147.84 (16)
N3—C8—C9—N2171.85 (15)C10—C9—N2—C11−32.6 (2)
C7—C8—C9—N2−3.78 (19)C7—N1—N2—C9−7.32 (18)
N3—C8—C9—C10−7.7 (3)C6—N1—N2—C9−156.74 (15)
C7—C8—C9—C10176.65 (17)C7—N1—N2—C11−151.89 (16)
N3—C12—C13—C145.7 (3)C6—N1—N2—C1158.7 (2)
N3—C12—C13—C15i−174.14 (16)C13—C12—N3—C8177.92 (15)
C15i—C13—C14—C15−0.4 (3)C9—C8—N3—C12−170.27 (17)
C12—C13—C14—C15179.78 (18)C7—C8—N3—C124.4 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11C···O1ii0.962.363.321 (2)179
C11—H11A···O1iii0.962.473.375 (3)157
C12—H12···O10.932.303.002 (2)132

Symmetry codes: (ii) x−1, −y+1/2, z−1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2742).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, F., Bi, C. F., Fan, Y. H. & Xiao, Y. (2007). Asian J. Chem.3, 1846–1852.
  • Selvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749–756.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography