PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1477.
Published online 2008 July 12. doi:  10.1107/S1600536808021107
PMCID: PMC2962107

2-Methyl-3-phenyl­sulfinyl-1-benzofuran

Abstract

The title compound, C15H12O2S, was prepared by the oxidation of 2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran system. The phenyl ring makes a dihedral angle of 78.76 (4)° with the benzofuran mean plane. The crystal structure is stabilized by π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 4.017 (3) Å]. In addition, the crystal structure exhibits inter­molecular C—H(...)π and C—H(...)O inter­actions.

Related literature

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1477-scheme1.jpg

Experimental

Crystal data

  • C15H12O2S
  • M r = 256.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1477-efi5.jpg
  • a = 12.946 (2) Å
  • b = 9.466 (1) Å
  • c = 10.294 (1) Å
  • β = 103.887 (2)°
  • V = 1224.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 173 (2) K
  • 0.60 × 0.40 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 6763 measured reflections
  • 2405 independent reflections
  • 2192 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.11
  • 2405 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021107/gk2156sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021107/gk2156Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to our communications on the synthesis and structures of 3-phenylsulfinyl-1-benzofuran analogues, viz. 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007) and 2,4,6,7-tetramethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 2-methyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.008 (1) ° from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [78.76 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the furan and the benzene rings of neighbouring molecules. The Cg1···Cg2iv distance is 4.017 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The crystal packing is further stabilized by C—H···π interactions between a phenyl H atom of the phenylsulfinyl substitutent and the benzene ring of the benzofuran unit, with a C12-H12···Cg2iii separation of 3.20 Å (Fig. 2 and Table 1; Cg2 is the centroid of the C2-C7 benzene ring, symmetry code as in Fig. 2). Additionally, intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-methyl-3-phenylsulfanyl-1-benzofuran (240 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 417–418 K; Rf = 0.71 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.77 (s, 3H), 7.06 (t, J = 7.80 Hz, 1H), 7.19–7.23 (m, 2H), 7.39–7.52 (m, 4H), 7.68 (d, J = 7.44 Hz, 2H); EI—MS 256 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
π–π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, ...

Crystal data

C15H12O2SF000 = 536
Mr = 256.31Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P_2ybcCell parameters from 5415 reflections
a = 12.946 (2) Åθ = 2.7–28.2º
b = 9.466 (1) ŵ = 0.25 mm1
c = 10.294 (1) ÅT = 173 (2) K
β = 103.887 (2)ºBlock, colorless
V = 1224.6 (3) Å30.60 × 0.40 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2405 independent reflections
Radiation source: fine-focus sealed tube2192 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
Detector resolution: 10.0 pixels mm-1θmax = 26.0º
T = 173(2) Kθmin = 1.6º
[var phi] and ω scansh = −15→15
Absorption correction: nonek = −11→7
6763 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0544P)2 + 0.4838P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2405 reflectionsΔρmax = 0.25 e Å3
164 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.21943 (3)0.67373 (4)0.24290 (4)0.02584 (14)
O10.42892 (9)0.63644 (14)0.58590 (11)0.0324 (3)
O20.23114 (10)0.57743 (14)0.13205 (11)0.0372 (3)
C10.30363 (12)0.61722 (17)0.39339 (15)0.0239 (3)
C20.31131 (11)0.48127 (17)0.45930 (14)0.0244 (3)
C30.26168 (13)0.35014 (17)0.43207 (16)0.0287 (3)
H30.20890.33410.35170.034*
C40.29212 (14)0.24396 (19)0.52657 (18)0.0353 (4)
H40.25900.15400.51070.042*
C50.37026 (15)0.2664 (2)0.64428 (18)0.0394 (4)
H50.38850.19160.70710.047*
C60.42179 (14)0.3951 (2)0.67166 (17)0.0379 (4)
H60.47600.41040.75070.045*
C70.38969 (12)0.49963 (19)0.57741 (15)0.0291 (4)
C80.37502 (12)0.70491 (18)0.47218 (15)0.0277 (3)
C90.09419 (12)0.62970 (16)0.27953 (14)0.0235 (3)
C100.02207 (13)0.55290 (18)0.18570 (16)0.0317 (4)
H100.04120.51680.10860.038*
C11−0.07920 (14)0.5289 (2)0.20534 (19)0.0374 (4)
H11−0.12960.47650.14120.045*
C12−0.10656 (13)0.58118 (19)0.31772 (19)0.0362 (4)
H12−0.17590.56510.33060.043*
C13−0.03302 (14)0.65707 (19)0.41178 (18)0.0359 (4)
H13−0.05190.69210.48940.043*
C140.06790 (13)0.68229 (17)0.39348 (16)0.0295 (4)
H140.11830.73470.45780.035*
C150.40351 (14)0.85446 (19)0.45966 (19)0.0364 (4)
H15A0.37070.88800.36910.055*
H15B0.48100.86330.47660.055*
H15C0.37780.91130.52500.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0309 (2)0.0267 (2)0.0210 (2)−0.00105 (15)0.00834 (16)0.00241 (14)
O10.0259 (6)0.0415 (7)0.0281 (6)−0.0028 (5)0.0033 (5)−0.0067 (5)
O20.0444 (7)0.0478 (8)0.0227 (6)0.0018 (6)0.0143 (5)−0.0049 (5)
C10.0239 (7)0.0266 (8)0.0227 (7)−0.0017 (6)0.0083 (6)−0.0008 (6)
C20.0223 (7)0.0298 (8)0.0225 (7)0.0032 (6)0.0082 (6)0.0006 (6)
C30.0291 (8)0.0281 (8)0.0300 (8)0.0009 (6)0.0094 (6)−0.0002 (6)
C40.0382 (9)0.0290 (9)0.0431 (9)0.0080 (7)0.0184 (8)0.0058 (7)
C50.0419 (10)0.0439 (11)0.0363 (9)0.0196 (8)0.0171 (8)0.0148 (8)
C60.0333 (9)0.0535 (11)0.0260 (8)0.0157 (8)0.0056 (7)0.0036 (8)
C70.0244 (7)0.0381 (9)0.0260 (8)0.0029 (7)0.0082 (6)−0.0034 (7)
C80.0234 (7)0.0340 (9)0.0278 (8)−0.0023 (6)0.0103 (6)−0.0051 (7)
C90.0270 (8)0.0215 (7)0.0211 (7)0.0020 (6)0.0041 (6)0.0024 (6)
C100.0346 (8)0.0323 (9)0.0257 (8)0.0012 (7)0.0026 (6)−0.0051 (7)
C110.0301 (9)0.0344 (9)0.0422 (9)−0.0027 (7)−0.0023 (7)−0.0063 (8)
C120.0264 (8)0.0342 (9)0.0480 (10)0.0003 (7)0.0086 (7)0.0015 (8)
C130.0353 (9)0.0392 (10)0.0358 (9)0.0014 (7)0.0141 (7)−0.0051 (7)
C140.0303 (8)0.0317 (9)0.0263 (8)−0.0020 (6)0.0062 (6)−0.0061 (6)
C150.0356 (9)0.0336 (9)0.0441 (10)−0.0114 (7)0.0175 (8)−0.0116 (8)

Geometric parameters (Å, °)

S—O21.496 (1)C6—H60.9500
S—C11.750 (2)C8—C151.476 (2)
S—C91.800 (2)C9—C101.378 (2)
O1—C81.373 (2)C9—C141.390 (2)
O1—C71.386 (2)C10—C111.392 (2)
C1—C81.357 (2)C10—H100.9500
C1—C21.447 (2)C11—C121.380 (3)
C2—C31.395 (2)C11—H110.9500
C2—C71.395 (2)C12—C131.385 (3)
C3—C41.388 (2)C12—H120.9500
C3—H30.9500C13—C141.385 (2)
C4—C51.396 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.385 (3)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.378 (2)C15—H15C0.9800
O2—S—C1109.46 (7)C1—C8—C15133.1 (2)
O2—S—C9106.26 (7)O1—C8—C15116.1 (1)
C1—S—C998.33 (7)C10—C9—C14121.2 (2)
C8—O1—C7106.5 (1)C10—C9—S117.9 (1)
C8—C1—C2107.7 (1)C14—C9—S120.6 (1)
C8—C1—S122.2 (1)C9—C10—C11119.2 (2)
C2—C1—S130.2 (1)C9—C10—H10120.4
C3—C2—C7119.2 (2)C11—C10—H10120.4
C3—C2—C1136.1 (1)C12—C11—C10120.2 (2)
C7—C2—C1104.6 (1)C12—C11—H11119.9
C4—C3—C2117.6 (2)C10—C11—H11119.9
C4—C3—H3121.2C11—C12—C13120.0 (2)
C2—C3—H3121.2C11—C12—H12120.0
C3—C4—C5121.5 (2)C13—C12—H12120.0
C3—C4—H4119.2C14—C13—C12120.5 (2)
C5—C4—H4119.2C14—C13—H13119.8
C6—C5—C4121.6 (2)C12—C13—H13119.8
C6—C5—H5119.2C13—C14—C9118.9 (2)
C4—C5—H5119.2C13—C14—H14120.6
C7—C6—C5116.1 (2)C9—C14—H14120.6
C7—C6—H6122.0C8—C15—H15A109.5
C5—C6—H6122.0C8—C15—H15B109.5
C6—C7—O1125.6 (2)H15A—C15—H15B109.5
C6—C7—C2123.9 (2)C8—C15—H15C109.5
O1—C7—C2110.5 (1)H15A—C15—H15C109.5
C1—C8—O1110.8 (2)H15B—C15—H15C109.5
O2—S—C1—C8126.3 (1)C1—C2—C7—O1−0.1 (2)
C9—S—C1—C8−123.2 (1)C2—C1—C8—O1−0.3 (2)
O2—S—C1—C2−55.6 (2)S—C1—C8—O1178.2 (1)
C9—S—C1—C255.0 (2)C2—C1—C8—C15−179.5 (2)
C8—C1—C2—C3−179.9 (2)S—C1—C8—C15−1.0 (3)
S—C1—C2—C31.7 (3)C7—O1—C8—C10.3 (2)
C8—C1—C2—C70.2 (2)C7—O1—C8—C15179.6 (1)
S—C1—C2—C7−178.1 (1)O2—S—C9—C10−17.0 (2)
C7—C2—C3—C41.1 (2)C1—S—C9—C10−130.2 (1)
C1—C2—C3—C4−178.7 (2)O2—S—C9—C14168.5 (1)
C2—C3—C4—C5−0.6 (2)C1—S—C9—C1455.3 (1)
C3—C4—C5—C6−0.7 (3)C14—C9—C10—C110.6 (2)
C4—C5—C6—C71.3 (2)S—C9—C10—C11−173.9 (1)
C5—C6—C7—O1178.7 (1)C9—C10—C11—C12−0.2 (3)
C5—C6—C7—C2−0.8 (2)C10—C11—C12—C13−0.3 (3)
C8—O1—C7—C6−179.6 (2)C11—C12—C13—C140.6 (3)
C8—O1—C7—C2−0.1 (2)C12—C13—C14—C9−0.3 (3)
C3—C2—C7—C6−0.4 (2)C10—C9—C14—C13−0.3 (2)
C1—C2—C7—C6179.4 (2)S—C9—C14—C13174.0 (1)
C3—C2—C7—O1−179.9 (1)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.593.387 (2)142
C15—H15C···O2ii0.982.423.232 (2)141
C12—H12···Cg2iii0.953.203.629 (3)152

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2156).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography