PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1471.
Published online 2008 July 12. doi:  10.1107/S1600536808021132
PMCID: PMC2962103

N,N′-Bis(3-bromo­benzyl­idene)ethane-1,2-diamine

Abstract

The mol­ecule of the title Schiff base compound, C16H14Br2N2, lies across a crystallographic inversion centre. The C=N bond adopts a trans configuration. The imino group is coplanar with the benzene ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. The inter­esting feature of the structure is the weak Br(...)Br inter­action [3.7501 (2) Å] linking the mol­ecules into chains along the c axis. These chains are stacked along the b axis.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see, for example: Fun, Kargar & Kia (2008 [triangle]); Fun, Kia & Kargar (2008 [triangle]); Fun, Mirkhani et al. (2008 [triangle]); Calligaris & Randaccio, (1987 [triangle]). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Harkema & van Hummel (2007 [triangle]); Kia, Mirkhani, Kalman & Deak (2007 [triangle]); Pal et al. (2005 [triangle]); Hou et al. (2001 [triangle]); Ren et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1471-scheme1.jpg

Experimental

Crystal data

  • C16H14Br2N2
  • M r = 394.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1471-efi1.jpg
  • a = 6.2578 (1) Å
  • b = 4.6549 (1) Å
  • c = 25.3272 (5) Å
  • β = 93.592 (1)°
  • V = 736.32 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.50 mm−1
  • T = 100.0 (1) K
  • 0.57 × 0.22 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.125, T max = 0.393
  • 24876 measured reflections
  • 3822 independent reflections
  • 2975 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.066
  • S = 1.07
  • 3822 reflections
  • 119 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021132/at2587sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021132/at2587Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and ARV thank the University of Isfahan for financial support and Dr Reza Kia for the manuscript preparation.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. Schiff bases have been used widely as ligands in the formation of transition metal complexes. Many such complexes have been structurally characterized, but only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Kia et al., 2007a,b; Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). As an extension of our work (Fun et al., 2008a,b,c) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The molecule of the title compound, (I), (Fig. 1), lies across a crystallographic inversion centre. The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit is composed of one-half of the molecule. The C═N bond adopts a trans configuration. The imino group is coplanar with the benzene ring. Within the molecule, the planar units are parallel, but extend in opposite directions from the methylene bridge.The interesting feature of the crystal structure is the weak Br···Br [symmetry code: 1 - x,-1/2 + y, 1/2 - z] interactions with distance 3.7501 (2) Å linking the molecules into chains along the c axis. These chains are stacked along the b axis (Fig. 2).

Experimental

The synthetic method has been described earlier (Fun et al., 2008a,b,c). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

All of the H atoms were located from the difference Fourier map and freely refined.

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for A: -x, 0.5 + y, 0.5 - z].
Fig. 2.
The crystal packing of (I), viewed down the b axis, showing chains along the c axis and stacking of these chains along the b-axis. The Br···Br contacts are shown as dashed lines.

Crystal data

C16H14Br2N2F000 = 388
Mr = 394.11Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8650 reflections
a = 6.2578 (1) Åθ = 3.2–38.3º
b = 4.6549 (1) ŵ = 5.50 mm1
c = 25.3272 (5) ÅT = 100.0 (1) K
β = 93.592 (1)ºBlock, colourless
V = 736.32 (2) Å30.57 × 0.22 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3822 independent reflections
Radiation source: fine-focus sealed tube2975 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 100.0(1) Kθmax = 37.5º
[var phi] and ω scansθmin = 3.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −10→10
Tmin = 0.125, Tmax = 0.393k = −7→7
24876 measured reflectionsl = −43→43

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066  w = 1/[σ2(Fo2) + (0.0244P)2 + 0.509P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3822 reflectionsΔρmax = 0.69 e Å3
119 parametersΔρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.30202 (2)0.03394 (3)0.278341 (6)0.02085 (4)
N10.35517 (18)0.8207 (3)0.44274 (5)0.0165 (2)
C10.2106 (2)0.3996 (3)0.36391 (5)0.0158 (2)
C20.1288 (2)0.1862 (3)0.33044 (5)0.0165 (2)
C3−0.0766 (2)0.0762 (3)0.33433 (6)0.0188 (3)
C4−0.2013 (2)0.1822 (3)0.37319 (6)0.0194 (3)
C5−0.1226 (2)0.3970 (3)0.40730 (6)0.0181 (2)
C60.0838 (2)0.5062 (3)0.40303 (5)0.0158 (2)
C70.1634 (2)0.7313 (3)0.43991 (6)0.0162 (2)
C80.4077 (2)1.0477 (3)0.48093 (6)0.0171 (2)
H10.348 (3)0.476 (4)0.3617 (9)0.021 (5)*
H3−0.128 (3)−0.067 (5)0.3113 (9)0.026 (6)*
H4−0.344 (3)0.115 (5)0.3752 (8)0.025 (5)*
H5−0.207 (4)0.474 (5)0.4344 (10)0.030 (6)*
H70.064 (3)0.805 (5)0.4623 (8)0.019 (5)*
H8A0.448 (3)1.212 (5)0.4612 (8)0.024 (5)*
H8B0.283 (3)1.109 (4)0.5004 (7)0.014 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02520 (7)0.02173 (8)0.01584 (6)0.00015 (5)0.00296 (4)−0.00294 (6)
N10.0157 (5)0.0168 (6)0.0168 (5)−0.0003 (4)0.0000 (4)−0.0027 (4)
C10.0152 (5)0.0160 (6)0.0160 (5)0.0002 (4)−0.0002 (4)0.0008 (5)
C20.0188 (5)0.0167 (6)0.0137 (5)0.0010 (4)−0.0007 (4)−0.0002 (4)
C30.0206 (6)0.0168 (7)0.0183 (6)−0.0013 (5)−0.0037 (4)−0.0018 (5)
C40.0153 (5)0.0196 (7)0.0232 (7)−0.0019 (4)−0.0014 (5)−0.0012 (5)
C50.0154 (5)0.0184 (7)0.0205 (6)−0.0008 (4)0.0012 (4)−0.0019 (5)
C60.0151 (5)0.0147 (6)0.0173 (5)0.0000 (4)−0.0003 (4)−0.0010 (4)
C70.0154 (5)0.0162 (6)0.0170 (6)0.0007 (4)0.0001 (4)−0.0015 (5)
C80.0160 (5)0.0170 (6)0.0179 (6)0.0001 (4)−0.0018 (4)−0.0030 (5)

Geometric parameters (Å, °)

Br1—C21.8967 (14)C4—C51.391 (2)
N1—C71.2676 (17)C4—H40.95 (2)
N1—C81.4564 (19)C5—C61.3985 (19)
C1—C21.383 (2)C5—H50.96 (2)
C1—C61.399 (2)C6—C71.470 (2)
C1—H10.93 (2)C7—H70.93 (2)
C2—C31.393 (2)C8—C8i1.525 (3)
C3—C41.385 (2)C8—H8A0.96 (2)
C3—H30.93 (2)C8—H8B0.991 (19)
C7—N1—C8116.70 (12)C4—C5—H5121.6 (14)
C2—C1—C6118.96 (12)C6—C5—H5118.0 (14)
C2—C1—H1122.9 (13)C5—C6—C1119.58 (13)
C6—C1—H1118.1 (13)C5—C6—C7119.22 (13)
C1—C2—C3121.90 (13)C1—C6—C7121.20 (12)
C1—C2—Br1119.28 (10)N1—C7—C6123.50 (13)
C3—C2—Br1118.81 (11)N1—C7—H7120.7 (12)
C4—C3—C2118.88 (13)C6—C7—H7115.8 (12)
C4—C3—H3121.0 (14)N1—C8—C8i109.87 (15)
C2—C3—H3120.1 (13)N1—C8—H8A106.8 (12)
C3—C4—C5120.27 (13)C8i—C8—H8A110.5 (12)
C3—C4—H4119.5 (13)N1—C8—H8B112.9 (11)
C5—C4—H4120.1 (13)C8i—C8—H8B110.9 (11)
C4—C5—C6120.41 (14)H8A—C8—H8B105.7 (17)
C6—C1—C2—C30.5 (2)C4—C5—C6—C7−179.45 (14)
C6—C1—C2—Br1−178.55 (10)C2—C1—C6—C5−0.4 (2)
C1—C2—C3—C4−0.6 (2)C2—C1—C6—C7179.52 (13)
Br1—C2—C3—C4178.42 (11)C8—N1—C7—C6179.20 (13)
C2—C3—C4—C50.7 (2)C5—C6—C7—N1172.14 (14)
C3—C4—C5—C6−0.6 (2)C1—C6—C7—N1−7.8 (2)
C4—C5—C6—C10.5 (2)C7—N1—C8—C8i123.51 (16)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2587).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. [PMC free article] [PubMed]
  • Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008). Acta Cryst. E64, o1374–o1375. [PMC free article] [PubMed]
  • Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.
  • Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.
  • Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1711–1716.
  • Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem.44, 3880–3889. [PubMed]
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem 45, 410–419. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography