PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1470.
Published online 2008 July 12. doi:  10.1107/S1600536808020850
PMCID: PMC2962102

3,5-Dinitro­benzyl methane­sulfonate

Abstract

The title compound, C8H8N2O7S, an inter­mediate in the synthesis of N,N-bis­(2-hydroxy­ethyl)-3,5-dinitro­aniline, exists as a discrete mol­ecule; the nitro groups are twisted with respect to the aromatic system [dihedral angles = 17.0 (1) and 26.3 (1)°].

Related literature

For the utility of benzyl methane­sulfonates in synthesis, see: Barker et al. (2008 [triangle]); Bretonniere et al. (2004 [triangle]); Oh et al. (2004 [triangle]); Schirok et al. (2005 [triangle]). For the incorporation of N,N-bis­(2-hydroxy­ethyl)benzyl­amines in macromolecular metal complexes, see: Crans & Boukhobza (1998 [triangle]); Koizumi et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1470-scheme1.jpg

Experimental

Crystal data

  • C8H8N2O7S
  • M r = 276.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1470-efi1.jpg
  • a = 9.3549 (5) Å
  • b = 8.7552 (5) Å
  • c = 14.1526 (8) Å
  • β = 107.430 (1)°
  • V = 1105.91 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 89 (1) K
  • 0.32 × 0.14 × 0.14 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.799, T max = 0.971
  • 6374 measured reflections
  • 2233 independent reflections
  • 1959 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.06
  • 2233 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 1995 [triangle]); cell refinement: SAINT (Bruker, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020850/ng2470sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020850/ng2470Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Higher Education Commission of Pakistan and the University of Auckland, New Zealand.

supplementary crystallographic information

Comment

Benzylic methansulfonates are readily prepared from benzylic alcohols and are often more easily prepared and more stable than the corresponding benzylic halide (Barker et al., 2008). In particular benzylic methanesulfonates are useful for the preparation of N,N-bis(2-hydroxyethyl)benzylamines, which are nitrogen mustard precursors. The dual functionality of the two free hydroxyl groups along with a basic nitrogen have also seen N,N-bis(2-hydroxyethyl)benzylamines used in synthesis of numerous metal complexes including those containing vanadium (Crans & Boukhobza, 1998), manganese (Koizumi et al., 2005, 2007) and iron (Koizumi et al., 2005). There are no hydrogen bonding or π - π interactions in the crystal. The closest intermolecular contacts are O3 ··· N1 of 2.83 Å, and a pair of O ··· O 3.32 Å contacts between sulfonate oxygen atoms.

Experimental

To a solution of 3,5-dinitrobenzyl alcohol (1.5 g, 7.57 mmol) and triethylamine (1.58 ml, 11.35 mmol) in dry THF (15 ml) at 0°C, under an atmosphere of nitrogen, was added dropwise a solution of methanesulfonyl chloride (0.88 ml, 11.35 mmol) in dry THF (5 ml) and the resulting solution stirred at room temperature for 3 h. The solvent was removed in vacuo and the residue diluted with ethyl acetate (150 ml), washed with brine (50 ml), dried (MgSO4) and the solvent removed in vacuo to afford the title compound (2 g, 96%) as a yellow solid which was recrystallized from ethyl acetate to give yellow crystals (m.p. 356–357 K) suitable for X-ray crystallography. IR νmax (NaCl)/cm-1 3399, 1627, 1541, 1458, 1344. 1H NMR (400 MHz, CDCl3, δ, p.p.m.) 3.15 (3H, s, CH3), 5.40 (2H, s, CH2O), 8.60 (2H, br s, Ar—H), 9.05 (1H, br s, Ar—H). δC (100 MHz, CDCl3, δ, p.p.m.) 38.6 (CH3, CH3), 67.4 (CH2, CH2O), 119.5 (CH, Ar—C), 128.2 (CH, Ar—C), 138.6 (CH, Ar—C), 149.1 (quat., Ar—C). MS m/z (EI) 276 (M+, 1%), 197 (100), 181 (42), 134 (20). HRMS (EI) Found M+ 276.00489, C8H8N2O7S requires 276.00522.

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
: Structure showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).

Crystal data

C8H8N2O7SF000 = 568
Mr = 276.22Dx = 1.659 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4665 reflections
a = 9.3549 (5) Åθ = 2.3–26.4º
b = 8.7552 (5) ŵ = 0.32 mm1
c = 14.1526 (8) ÅT = 89 (1) K
β = 107.430 (1)ºRod, yellow
V = 1105.91 (11) Å30.32 × 0.14 × 0.14 mm
Z = 4

Data collection

Bruker SMART diffractometer2233 independent reflections
Radiation source: fine-focus sealed tube1959 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 89(1) Kθmax = 26.4º
ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −9→11
Tmin = 0.799, Tmax = 0.971k = −10→9
6374 measured reflectionsl = −17→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088  w = 1/[σ2(Fo2) + (0.0465P)2 + 0.6248P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2233 reflectionsΔρmax = 0.28 e Å3
163 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.28908 (4)0.49088 (4)0.39904 (3)0.01554 (13)
O10.79782 (14)0.02166 (15)0.65112 (9)0.0229 (3)
O20.75778 (13)−0.16192 (14)0.74420 (9)0.0199 (3)
O30.23786 (14)−0.34566 (14)0.65950 (9)0.0230 (3)
O40.06497 (14)−0.21217 (16)0.55662 (12)0.0343 (4)
O50.31800 (13)0.32888 (13)0.45017 (8)0.0171 (3)
O60.31513 (15)0.60687 (14)0.47320 (9)0.0259 (3)
O70.37522 (14)0.49312 (14)0.33100 (9)0.0223 (3)
N10.71506 (16)−0.05791 (16)0.68364 (10)0.0166 (3)
N20.19482 (16)−0.23139 (16)0.60944 (11)0.0191 (3)
C10.35300 (19)0.15179 (18)0.58246 (11)0.0149 (3)
C20.50631 (18)0.11998 (19)0.61537 (11)0.0155 (3)
H2A0.57610.19570.61550.019*
C30.55267 (18)−0.02626 (19)0.64782 (12)0.0148 (3)
C40.45474 (18)−0.14488 (18)0.64856 (11)0.0148 (3)
H4A0.4880−0.24180.67200.018*
C50.30408 (18)−0.10912 (18)0.61204 (11)0.0150 (3)
C60.25038 (19)0.03509 (19)0.57931 (12)0.0154 (3)
H6A0.14790.05360.55570.019*
C70.29970 (19)0.31110 (18)0.54971 (12)0.0163 (3)
H7A0.19550.32350.54700.020*
H7B0.35930.38620.59510.020*
C80.0984 (2)0.4858 (2)0.33155 (17)0.0319 (5)
H8A0.07020.58100.29740.048*
H8B0.03990.46960.37600.048*
H8C0.08070.40400.28430.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0168 (2)0.0125 (2)0.0157 (2)−0.00083 (14)0.00236 (16)0.00293 (14)
O10.0180 (6)0.0286 (7)0.0219 (7)−0.0040 (5)0.0057 (5)0.0021 (5)
O20.0211 (6)0.0168 (6)0.0175 (6)0.0029 (5)−0.0006 (5)0.0006 (5)
O30.0241 (7)0.0172 (6)0.0263 (7)−0.0011 (5)0.0057 (5)0.0086 (5)
O40.0164 (7)0.0248 (7)0.0529 (9)−0.0036 (5)−0.0030 (6)0.0140 (7)
O50.0237 (6)0.0143 (6)0.0134 (6)0.0010 (5)0.0055 (5)0.0022 (4)
O60.0421 (8)0.0133 (6)0.0230 (6)−0.0022 (5)0.0105 (6)0.0000 (5)
O70.0250 (7)0.0227 (7)0.0200 (6)−0.0002 (5)0.0079 (5)0.0053 (5)
N10.0176 (7)0.0164 (7)0.0138 (6)−0.0001 (6)0.0018 (6)−0.0035 (6)
N20.0189 (7)0.0149 (7)0.0227 (7)−0.0007 (6)0.0052 (6)0.0035 (6)
C10.0207 (8)0.0135 (8)0.0100 (7)0.0010 (6)0.0038 (6)0.0006 (6)
C20.0190 (8)0.0147 (8)0.0126 (7)−0.0022 (6)0.0044 (6)−0.0009 (6)
C30.0155 (8)0.0178 (8)0.0099 (7)0.0001 (6)0.0018 (6)−0.0016 (6)
C40.0200 (8)0.0132 (8)0.0101 (7)0.0020 (6)0.0030 (6)0.0000 (6)
C50.0185 (8)0.0140 (8)0.0124 (7)−0.0028 (6)0.0046 (6)−0.0004 (6)
C60.0171 (8)0.0163 (8)0.0120 (7)0.0010 (6)0.0031 (6)0.0005 (6)
C70.0216 (8)0.0136 (8)0.0136 (8)−0.0003 (6)0.0053 (6)0.0009 (6)
C80.0177 (9)0.0331 (11)0.0390 (12)0.0005 (8)−0.0002 (8)0.0141 (9)

Geometric parameters (Å, °)

S—O61.4279 (13)C1—C71.507 (2)
S—O71.4290 (13)C2—C31.385 (2)
S—O51.5783 (12)C2—H2A0.9300
S—C81.7538 (19)C3—C41.387 (2)
O1—N11.2289 (19)C4—C51.384 (2)
O2—N11.2322 (18)C4—H4A0.9300
O3—N21.2223 (18)C5—C61.386 (2)
O4—N21.2323 (19)C6—H6A0.9300
O5—C71.4773 (19)C7—H7A0.9700
N1—C31.476 (2)C7—H7B0.9700
N2—C51.473 (2)C8—H8A0.9600
C1—C61.394 (2)C8—H8B0.9600
C1—C21.397 (2)C8—H8C0.9600
O6—S—O7118.62 (8)C5—C4—C3115.40 (15)
O6—S—O5109.52 (7)C5—C4—H4A122.3
O7—S—O5105.51 (7)C3—C4—H4A122.3
O6—S—C8109.88 (10)C4—C5—C6123.88 (15)
O7—S—C8108.68 (9)C4—C5—N2117.80 (14)
O5—S—C8103.51 (8)C6—C5—N2118.32 (14)
C7—O5—S118.62 (10)C5—C6—C1118.68 (15)
O1—N1—O2124.75 (14)C5—C6—H6A120.7
O1—N1—C3117.64 (13)C1—C6—H6A120.7
O2—N1—C3117.61 (14)O5—C7—C1105.58 (13)
O3—N2—O4123.85 (14)O5—C7—H7A110.6
O3—N2—C5118.35 (13)C1—C7—H7A110.6
O4—N2—C5117.80 (14)O5—C7—H7B110.6
C6—C1—C2119.55 (15)C1—C7—H7B110.6
C6—C1—C7120.50 (15)H7A—C7—H7B108.8
C2—C1—C7119.95 (15)S—C8—H8A109.5
C3—C2—C1118.88 (15)S—C8—H8B109.5
C3—C2—H2A120.6H8A—C8—H8B109.5
C1—C2—H2A120.6S—C8—H8C109.5
C2—C3—C4123.55 (15)H8A—C8—H8C109.5
C2—C3—N1118.36 (14)H8B—C8—H8C109.5
C4—C3—N1118.09 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2470).

References

  • Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett.49, 1660–1664.
  • Bretonniere, Y., Cann, M. J., Parker, D. & Slater, R. (2004). Org. Biomol. Chem.2, 1624–1632. [PubMed]
  • Bruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Crans, D. C. & Boukhobza, I. (1998). J. Am. Chem. Soc.120, 8069–8078.
  • Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem.44, 1208–1210. [PubMed]
  • Koizumi, S., Nihei, M., Shiga, T., Nakano, M., Nojiri, H., Bircher, R., Waldmann, O., Ochsenbein, S. T., Guedel, H. U., Fernandez-Alonso, F. & Oshio, H. (2007). Chem. Eur. J.13, 8445–8453. [PubMed]
  • Oh, S.-J., Lee, K. C., Lee, S.-Y., Ryu, E. K., Saji, H., Choe, Y. S., Chi, D. Y., Kim, S. E., Lee, J. & Kim, B.-T. (2004). Bioorg. Med. Chem.12, 5505–5513. [PubMed]
  • Schirok, H., Alonso-Alija, C., Benet-Buchholz, J., Goeller, A. H., Grosser, R., Michels, M. & Paulsen, H. (2005). J. Org. Chem.70, 9463–9469. [PubMed]
  • Sheldrick, G. M. (1997). SADABS Univ. of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography