PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1469.
Published online 2008 July 12. doi:  10.1107/S1600536808020813
PMCID: PMC2962101

Benzamide oxime

Abstract

In the crystal structure of the title compound, C7H8N2O, mol­ecules are connected via inter­molecular N—H(...)O and O—H(...)N hydrogen bonds to form a two-dimensional supra­molecular structure. The oxime group has an E configuration and the dihedral angle between the mean planes of the benzene ring and the amidoxime grouping is 20.2 (3)°.

Related literature

For related literature, see: Bruton et al. (2003 [triangle]); Kang et al. (2007 [triangle]); Li et al. (2007 [triangle]); Srivastava et al. (1997 [triangle]); Wang et al. (2006 [triangle], 2007 [triangle]); Bertolasi et al. (1982 [triangle]); Chertanova et al. (1994 [triangle]); Goel et al. (1981 [triangle]); Xing, Ding et al. (2007 [triangle]); Xing, Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1469-scheme1.jpg

Experimental

Crystal data

  • C7H8N2O
  • M r = 136.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1469-efi1.jpg
  • a = 12.579 (2) Å
  • b = 5.053 (1) Å
  • c = 10.908 (2) Å
  • β = 90.380 (7)°
  • V = 693.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 273 (2) K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.975, T max = 0.984
  • 4489 measured reflections
  • 1216 independent reflections
  • 967 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.145
  • S = 1.04
  • 1216 reflections
  • 92 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020813/ez2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020813/ez2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People’s Republic of China (grant No. 2007XJ15).

supplementary crystallographic information

Comment

The synthesis of Schiff base complexes containing oxime (–C═N—OH) functional groups has attracted great interest due to their antiviral, anticancer and antibacterial activities (Srivastava et al., 1997; Goel et al., 1981; Li et al., 2007; Wang et al., 2007; Xing, Ding et al. (2007), Xing, Wang et al. (2007). Also, the interesting hydrogen-bond systems in the crystal structures of oximes have been analysed and a correlation between the pattern of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982; Bruton et al., 2003). Herein, we report the synthesis and crystal structure of the title compound, (I). In the crystal structure of the title compound, molecules are connected via intermolecular N—H···O and O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form a two-dimensional supramolecular structure. The oxime group has an E configuration [C4—C9—N1—O3 = -179.43 (14) °, Chertanova et al., 1994] and the dihedral angle between the mean planes of the benzene ring and the C7/N1/N2/O grouping is 20.2 (3) °, which is less than that reported for similar structures by Kang et al. (2007) and Xing, Ding et al. (2007), Xing, Wang et al. (2007).

Experimental

Reagents and solvents used were of commercially available quality. The Schiff base ligand benzamidoxime was synthesized according to the method of Kang et al. (2007). A mixture of benzonitrile (0.33 mol) and hydroxylamine hydrochloride (0.33 mol) in ethanol (231 ml) and potassium carbonate (0.33 mol) in water (66 ml) was refluxed for 12 h. After cooling and filtering, compound (I) was obtained. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 A (for NH), O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of I showing the atom numbering scheme with displacement ellipsoids at the 30% probability level.
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.

Crystal data

C7H8N2OF000 = 288
Mr = 136.15Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1198 reflections
a = 12.579 (2) Åθ = 2.5–27.7º
b = 5.053 (1) ŵ = 0.09 mm1
c = 10.908 (2) ÅT = 273 (2) K
β = 90.380 (7)ºBlock, colorless
V = 693.3 (2) Å30.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1216 independent reflections
Radiation source: fine-focus sealed tube967 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.975, Tmax = 0.984k = −6→6
4489 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.145  w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2452P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1216 reflectionsΔρmax = 0.21 e Å3
92 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.50237 (11)0.1813 (3)1.12339 (12)0.0523 (4)
H10.45780.07501.09900.078*
N20.58736 (13)0.1959 (3)1.03730 (14)0.0453 (5)
C70.63885 (14)0.4152 (4)1.05147 (16)0.0391 (5)
N10.61721 (14)0.5943 (3)1.13971 (15)0.0508 (5)
H1A0.56660.56531.19060.061*
H1B0.65400.73731.14500.061*
C10.72942 (14)0.4640 (4)0.96838 (17)0.0411 (5)
C50.8218 (2)0.3813 (6)0.7814 (2)0.0710 (7)
H50.82560.29080.70730.085*
C60.73762 (19)0.3377 (5)0.8576 (2)0.0643 (7)
H60.68470.21950.83370.077*
C20.8089 (2)0.6386 (6)0.9997 (3)0.0781 (8)
H20.80620.72761.07420.094*
C40.89920 (19)0.5537 (5)0.8122 (2)0.0674 (7)
H40.95600.58390.75990.081*
C30.8926 (2)0.6829 (7)0.9215 (3)0.0962 (11)
H30.94550.80270.94370.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0545 (9)0.0537 (9)0.0488 (8)−0.0083 (6)0.0195 (7)0.0020 (6)
N20.0477 (9)0.0438 (10)0.0445 (9)−0.0035 (7)0.0130 (7)0.0000 (7)
C70.0435 (10)0.0375 (10)0.0364 (9)0.0027 (8)0.0008 (7)0.0041 (7)
N10.0609 (11)0.0444 (10)0.0471 (9)−0.0028 (8)0.0116 (8)−0.0054 (8)
C10.0427 (10)0.0376 (10)0.0429 (10)0.0011 (8)0.0024 (8)0.0036 (8)
C50.0705 (15)0.0845 (18)0.0583 (13)−0.0135 (13)0.0222 (12)−0.0124 (13)
C60.0606 (13)0.0763 (16)0.0562 (13)−0.0226 (12)0.0151 (10)−0.0164 (12)
C20.0739 (16)0.0848 (19)0.0757 (16)−0.0334 (14)0.0208 (13)−0.0281 (14)
C40.0543 (13)0.0735 (16)0.0747 (16)−0.0065 (12)0.0226 (11)0.0063 (13)
C30.0763 (18)0.108 (2)0.105 (2)−0.0503 (18)0.0278 (16)−0.0271 (19)

Geometric parameters (Å, °)

O1—N21.430 (2)C5—C41.348 (4)
O1—H10.8200C5—C61.368 (3)
N2—C71.292 (2)C5—H50.9300
C7—N11.350 (2)C6—H60.9300
C7—C11.481 (3)C2—C31.378 (4)
N1—H1A0.8600C2—H20.9300
N1—H1B0.8600C4—C31.362 (4)
C1—C61.371 (3)C4—H40.9300
C1—C21.375 (3)C3—H30.9300
N2—O1—H1109.5C6—C5—H5119.6
C7—N2—O1109.99 (15)C5—C6—C1121.6 (2)
N2—C7—N1123.82 (17)C5—C6—H6119.2
N2—C7—C1117.16 (16)C1—C6—H6119.2
N1—C7—C1118.97 (17)C1—C2—C3120.5 (2)
C7—N1—H1A120.0C1—C2—H2119.7
C7—N1—H1B120.0C3—C2—H2119.7
H1A—N1—H1B120.0C5—C4—C3118.7 (2)
C6—C1—C2117.3 (2)C5—C4—H4120.7
C6—C1—C7121.63 (18)C3—C4—H4120.7
C2—C1—C7121.06 (18)C4—C3—C2121.0 (2)
C4—C5—C6120.9 (2)C4—C3—H3119.5
C4—C5—H5119.6C2—C3—H3119.5
O1—N2—C7—N13.2 (2)C2—C1—C6—C50.5 (4)
O1—N2—C7—C1−179.43 (14)C7—C1—C6—C5−179.5 (2)
N2—C7—C1—C621.8 (3)C6—C1—C2—C30.2 (4)
N1—C7—C1—C6−160.7 (2)C7—C1—C2—C3−179.8 (3)
N2—C7—C1—C2−158.2 (2)C6—C5—C4—C30.5 (5)
N1—C7—C1—C219.3 (3)C5—C4—C3—C20.2 (5)
C4—C5—C6—C1−0.9 (4)C1—C2—C3—C4−0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.102.820 (2)147
N1—H1A···O1ii0.862.293.031 (2)145

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2131).

References

  • Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.
  • Bruker (2003). SMARTand SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinend, D. S. (2003). New J. Chem.27, 1084–1094.
  • Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.
  • Goel, A. B., Goel, S. & Vanderveer, D. (1981). Inorg. Chim. Acta, 54, L5–L6.
  • Kang, S.-S., Wang, H.-B., Zeng, H.-S. & Li, H.-L. (2007). Acta Cryst. E63, o3279.
  • Li, H.-L., Zeng, H.-S., Kang, S.-S. & Wang, H.-B. (2007). Acta Cryst. E63, o4763.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & Morais, L. P. F. (1997). J. Mol. Struct.406, 159–167.
  • Wang, H.-B., Xing, Z.-T., Ding, W.-L., Yin, J. & Wang, P.-L. (2007). Acta Cryst. E63, o1834–o1835.
  • Wang, H.-B., Yan, X.-C. & Liu, Z.-Q. (2006). Acta Cryst. E62, o4243–o4244.
  • Xing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019–o1020.
  • Xing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236–o2237.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography