PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1468.
Published online 2008 July 12. doi:  10.1107/S1600536808020989
PMCID: PMC2962100

Benzo[a]fluoren-11-one

Abstract

The mol­ecule of the title compound, C17H10O, is nearly planar, the largest deviation from the mean plane being 0.06 Å. The crystal structure is governed by π–π inter­actions, with centroid–centroid distances ranging from .559 to 3.730 Å.

Related literature

For related literature, see: Banik et al. (2006 [triangle]); Huang et al. (1997 [triangle]); Peng et al. (2001 [triangle]); Streitweiser & Brown (1988 [triangle]); Xie et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1468-scheme1.jpg

Experimental

Crystal data

  • C17H10O
  • M r = 230.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1468-efi1.jpg
  • a = 9.3852 (4) Å
  • b = 7.1165 (3) Å
  • c = 16.8809 (7) Å
  • β = 99.278 (5)°
  • V = 1112.72 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 (2) K
  • 0.55 × 0.20 × 0.20 mm

Data collection

  • Oxford Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.955, T max = 0.983
  • 4736 measured reflections
  • 2134 independent reflections
  • 1433 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.094
  • S = 1.01
  • 2134 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
π–π Interactions (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020989/dn2363sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020989/dn2363Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzo[a]fluoren-11-one, C17H10O, (Scheme), can be readily synthesed by oxidation of the corresponding hydrocarbon with different oxidants, such as NaBiO3 (Banik et al., 2006), or by Friedel-Crafts ring closure reaction(Streitwieser et al., 1988). But its crystal structure determination has not been carried out yet. During the past decade, our group has used various non-organic methods, such as high-voltage electric discharge in liquid (Huang et al., 1997), vaporized (Xie et al., 2001) chloroform and CCl4 and solvothermal reaction (Peng et al., 2001) to generate and trap a family of perchlorinated fullerene fragments. Recently in our low pressure premixed benzene-oxygen combustion system, we generated the compound, C17H10O, and isolated it. We report here the synthesis and crystal structure of the compound.

The title compound, C17H10O, is built up from four fused rings. The whole molecule is nearly planar with the largest deviations from the mean plane being 0.06Å (Fig. 1). The crystal packing is governed by π-π interactions (Table 1).

Experimental

The compound was prepared in low pressure pre-mixed benzene-oxygen flames. The premixed flames conditions for the soot production as the following range: atom C/O ratio:1–2; combustion chamber pressure: 350torr. The soot collected from the water-cooled coping was extracted with toluene using an ultrasonic bath under room temperature, the resulting dark-brown solution was separated and purified by multi-stage high-preformance liquid chromatography(HPLC), finally we obtained one of fractions contained pure C17H10O. The red single crystals suitable for X-ray diffraction crystallized from toluene at room temperature. The product was analyzed by Atmospheric-Pressure Chemical Ionization(APCI) mass spectrometry(negative mode). The molecular peak appeared at a mass/charge ratio of 230.

Refinement

All H atoms were placed geometrically and treated as riding with C—H distances of 0.95 Å and Uiso= 1.2Ueq(C).

Figures

Fig. 1.
ORTEP Molecular view of compound I. Thermal ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C17H10OF000 = 480
Mr = 230.25Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1792 reflections
a = 9.3852 (4) Åθ = 2.7–32.6º
b = 7.1165 (3) ŵ = 0.08 mm1
c = 16.8809 (7) ÅT = 173 (2) K
β = 99.278 (5)ºPrism, red
V = 1112.72 (8) Å30.55 × 0.20 × 0.20 mm
Z = 4

Data collection

Oxford Gemini S Ultra diffractometer2134 independent reflections
Radiation source: fine-focus sealed tube1433 reflections with > 2σ
Monochromator: graphiteRint = 0.034
T = 173(2) Kθmax = 26.0º
ω scansθmin = 3.6º
Absorption correction: empirical (using intensity measurements)(CrysAlis RED; Oxford Diffraction, 2007)h = −11→10
Tmin = 0.955, Tmax = 0.983k = −8→8
4736 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.0409P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2134 reflectionsΔρmax = 0.15 e Å3
163 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction, 2007)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20866 (13)0.18498 (17)−0.07292 (8)0.0441 (4)
C1−0.02937 (18)0.4405 (3)−0.16653 (10)0.0378 (5)
H1A−0.03960.3189−0.19000.045*
C2−0.11989 (19)0.5866 (3)−0.19725 (11)0.0438 (5)
H2A−0.19300.5651−0.24220.053*
C3−0.10410 (18)0.7630 (3)−0.16279 (11)0.0411 (5)
H3A−0.16680.8614−0.18460.049*
C40.00180 (17)0.7996 (3)−0.09676 (11)0.0356 (4)
H4A0.01250.9214−0.07350.043*
C50.26877 (16)0.7875 (2)0.05511 (10)0.0302 (4)
H5A0.22800.91000.05120.036*
C60.38358 (17)0.7465 (2)0.11267 (10)0.0333 (4)
H6A0.42200.84220.14920.040*
C70.56835 (17)0.5255 (3)0.17902 (10)0.0368 (5)
H7A0.60540.62010.21640.044*
C80.63221 (18)0.3530 (3)0.18308 (11)0.0395 (5)
H8A0.71380.32880.22290.047*
C90.57847 (17)0.2119 (3)0.12911 (11)0.0397 (5)
H9A0.62460.09270.13210.048*
C100.46019 (17)0.2432 (3)0.07188 (11)0.0346 (4)
H10A0.42380.14500.03610.041*
C110.18804 (17)0.3497 (2)−0.05773 (10)0.0313 (4)
C120.07505 (15)0.4757 (2)−0.10158 (9)0.0291 (4)
C130.09063 (15)0.6536 (2)−0.06621 (10)0.0282 (4)
C140.21217 (16)0.6458 (2)0.00190 (9)0.0272 (4)
C150.27059 (16)0.4674 (2)0.00659 (9)0.0275 (4)
C160.39179 (16)0.4204 (2)0.06560 (9)0.0278 (4)
C170.44778 (16)0.5651 (3)0.11987 (10)0.0304 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0524 (8)0.0301 (8)0.0491 (8)−0.0072 (6)0.0059 (6)−0.0097 (7)
C10.0367 (9)0.0464 (12)0.0317 (9)−0.0128 (9)0.0093 (8)−0.0059 (10)
C20.0361 (10)0.0628 (15)0.0302 (9)−0.0109 (10)−0.0011 (8)0.0009 (11)
C30.0332 (9)0.0504 (13)0.0389 (10)0.0002 (9)0.0032 (9)0.0091 (11)
C40.0329 (9)0.0376 (10)0.0369 (10)−0.0036 (8)0.0076 (8)0.0004 (9)
C50.0322 (8)0.0281 (9)0.0315 (9)−0.0046 (8)0.0090 (8)−0.0040 (9)
C60.0380 (9)0.0355 (10)0.0271 (9)−0.0106 (8)0.0072 (8)−0.0086 (9)
C70.0354 (9)0.0485 (12)0.0271 (9)−0.0076 (9)0.0070 (8)−0.0004 (10)
C80.0317 (9)0.0562 (14)0.0297 (10)−0.0007 (9)0.0021 (8)0.0106 (10)
C90.0378 (10)0.0390 (11)0.0445 (11)0.0035 (9)0.0130 (9)0.0117 (10)
C100.0354 (9)0.0340 (11)0.0366 (10)−0.0079 (8)0.0128 (8)0.0000 (9)
C110.0331 (9)0.0311 (10)0.0319 (9)−0.0098 (8)0.0113 (8)−0.0029 (9)
C120.0288 (8)0.0343 (10)0.0257 (9)−0.0069 (8)0.0092 (8)−0.0011 (9)
C130.0244 (8)0.0370 (11)0.0245 (8)−0.0073 (8)0.0078 (7)−0.0012 (9)
C140.0256 (8)0.0316 (10)0.0260 (9)−0.0074 (7)0.0087 (7)−0.0007 (9)
C150.0294 (8)0.0276 (9)0.0277 (9)−0.0080 (8)0.0111 (7)−0.0011 (9)
C160.0261 (8)0.0320 (10)0.0272 (9)−0.0047 (7)0.0095 (7)0.0041 (9)
C170.0282 (9)0.0385 (11)0.0258 (9)−0.0061 (8)0.0083 (8)0.0015 (9)

Geometric parameters (Å, °)

O1—C111.222 (2)C7—C171.412 (2)
C1—C121.371 (2)C7—H7A0.9500
C1—C21.389 (3)C8—C91.395 (3)
C1—H1A0.9500C8—H8A0.9500
C2—C31.381 (3)C9—C101.367 (2)
C2—H2A0.9500C9—H9A0.9500
C3—C41.393 (2)C10—C161.411 (2)
C3—H3A0.9500C10—H10A0.9500
C4—C131.380 (2)C11—C151.486 (2)
C4—H4A0.9500C11—C121.491 (2)
C5—C61.361 (2)C12—C131.397 (2)
C5—C141.397 (2)C13—C141.484 (2)
C5—H5A0.9500C14—C151.380 (2)
C6—C171.421 (2)C15—C161.426 (2)
C6—H6A0.9500C16—C171.422 (2)
C7—C81.362 (3)
C12—C1—C2118.49 (18)C8—C9—H9A119.6
C12—C1—H1A120.8C9—C10—C16120.40 (17)
C2—C1—H1A120.8C9—C10—H10A119.8
C3—C2—C1120.36 (17)C16—C10—H10A119.8
C3—C2—H2A119.8O1—C11—C15127.75 (16)
C1—C2—H2A119.8O1—C11—C12126.62 (16)
C2—C3—C4121.42 (18)C15—C11—C12105.62 (14)
C2—C3—H3A119.3C1—C12—C13121.30 (16)
C4—C3—H3A119.3C1—C12—C11130.30 (16)
C13—C4—C3117.91 (17)C13—C12—C11108.39 (13)
C13—C4—H4A121.0C4—C13—C12120.51 (15)
C3—C4—H4A121.0C4—C13—C14131.32 (16)
C6—C5—C14118.63 (16)C12—C13—C14108.15 (15)
C6—C5—H5A120.7C15—C14—C5121.40 (15)
C14—C5—H5A120.7C15—C14—C13109.10 (15)
C5—C6—C17122.13 (16)C5—C14—C13129.49 (16)
C5—C6—H6A118.9C14—C15—C16121.37 (15)
C17—C6—H6A118.9C14—C15—C11108.72 (14)
C8—C7—C17120.77 (17)C16—C15—C11129.91 (15)
C8—C7—H7A119.6C10—C16—C17118.86 (15)
C17—C7—H7A119.6C10—C16—C15124.34 (15)
C7—C8—C9120.38 (16)C17—C16—C15116.79 (15)
C7—C8—H8A119.8C7—C17—C6121.51 (16)
C9—C8—H8A119.8C7—C17—C16118.79 (16)
C10—C9—C8120.77 (17)C6—C17—C16119.69 (14)
C10—C9—H9A119.6

Table 1 π–π Interactions (Å)

Centroid–centroidInterplanar distanceSlippage
Cg1···Cg1i3.6833.461.26
Cg1···Cg2i3.6273.480.98
Cg1···Cg4ii3.5593.381.06
Cg2···Cg3i3.7303.491.23
Cg3···Cg4ii3.6673.381.31

Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2363).

References

  • Banik, B. K., Cordoba, M. & Marquez, J. (2006). Chemistry (Rajkot, India), 3, 72–75.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Huang, R.-B., Huang, W.-J., Wang, Y.-H., Tang, Z.-C. & Zheng, L.-S. (1997). J. Am. Chem. Soc.117, 5954–5955.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Peng, Y., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. (2001). Acta Cryst. E57, o617–o618.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Streitweiser, A. Jr & Brown, S. M. (1988). J. Org. Chem.53, 904–906.
  • Xie, S.-Y., Deng, S.-L., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2001). J. Phys. Chem. B, 105, 1734–1738.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography