PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1608.
Published online 2008 July 26. doi:  10.1107/S160053680802312X
PMCID: PMC2962099

Methyl 2-[(E)-(4-nitro­phen­yl)hydrazono]-3-oxobutyrate

Abstract

The mol­ecule of the title compound, C11H11N3O5, exists as the E isomer as it is stabilized by an intra­molecular hydrogen bond. Except for the methyl H atoms, all atoms lie in special positions on a mirror plane and form a large conjugated system; the methyl H atoms are disordered about the mirror plane. In the crystalline state, bifurcated intra- and inter­molecular N—H(...)O hydrogen bonds and four inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into large perfectly planar sheets. Along the c axis, the N—N bond center approaches the phenyl-ring centroids of its neighbouring mol­ecules above and below to give π–π overlap (at a distance of ca 3.57 Å), thus fusing the mol­ecules into a three-dimensional framework.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Lewis et al. (1999 [triangle]); Liu et al. (2007 [triangle], 2008 [triangle]); Mague et al. (1997 [triangle]); Mahy et al. (1993 [triangle]); Serbutoviez et al. (1995 [triangle]); Thami et al. (1992 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1608-scheme1.jpg

Experimental

Crystal data

  • C11H11N3O5
  • M r = 265.2
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1608-efi1.jpg
  • a = 12.880 (3) Å
  • b = 14.299 (3) Å
  • c = 6.6328 (14) Å
  • V = 1221.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.966, T max = 0.977
  • 10245 measured reflections
  • 1546 independent reflections
  • 968 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.121
  • S = 1.03
  • 1546 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802312X/cs2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802312X/cs2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Yangzhou University (grant No. 2006XJJ03) for financial support of this work.

supplementary crystallographic information

Comment

Phenylhydrazone and its derivatives show remarkable stability and high tendency to form non-centrosymmetric crystal packing (Lewis et al., 1999; Mague et al., 1997) and exceptional electronic, bioactive and chemical properties useful for analytic purposes (Mahy et al., 1993), for biological chemistry (Thami et al., 1992) and also for optical materials (Serbutoviez et al., 1995). As a part of our ongoing research (Liu et al., 2007; Liu et al., 2008), the crystal structure of the title compound was solved.

The molecule of the title compound exists in the (E)-isomer configuration, not as the generally more stable (Z)-isomer (Schemes 1 and 2). The (E)-isomer exists here because of the N—H···O intra-molecular hydrogen bond stabilizes it by forming a pseudo-ring S(6) (Bernstein et al., 1995) motif (Fig. 1, Table 1 and 2). The N1—C6 bond distance at 1.397 (3) Å is longer than the expected C═N double bond (1.32 Å) but is shorter than a C—N single bond (1.47 Å) because of the classic sp2-hybrid nitrogen atom, as also found in our earlier work (Liu et al., 2007, 2008). All these effects may help all non-hydrogen atoms to form a perfect plane which coincides with the mirror plane of the space group, less for the hydrogen atoms of the two methyl groups whose six H atoms are disordered over two orientations.

In the crystal packing the molecules are linked into larger perfectly planar sheets via by four C—H···O inter-molecular hydrogen bonds and one N—H···O intra-molecular hydrogen bond running parallel to the [001] plane (Fig. 2, Table 2). H1 atom of the N1 atom is a part of a bifurcated system and makes both intra- and intermolecular H-bridges, with angles around the H1 adding up to 360°. Finally, along the c axis the N1—N2 bond centers of molecules combine its up and down neighbours' phenyl rings into three dimensional framework (Fig. 2). Consecutive bond centers···phenyl ring centers are at a distance of ca. 3.57 Å and an incline at an angle of ca. 137° (Fig. 3).

Experimental

The title compound was synthesized according to literature procedure (Wang et al. 2005; Liu et al. 2008). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane at room temperature over a period of 6 d.

Refinement

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 (aromatic) or 0.97 Å (methyl), and with Uiso(H) values of 1.2Ueq (C, N).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Disorder of the two methyl groups are indicated and the N–H···O intra-molecular hydrogen bond shown as dashed lines.
Fig. 2.
Part of the crystal structure of the title compound, showing the formation of a hydrogen bonded plane parallel to [001], which is built by one N—H···O and four C—H···O inter-molecular hydrogen ...
Fig. 3.
Excerpt of the crystal structure of the title compound, showing that along the c axis the N1—N2 bond center of one molecule combines its up and down phenyl rings in the other two molecules into a three dimensional framework. H atoms not involved ...
Fig. 4.
The E and Z isomers of the title compound.

Crystal data

C11H11N3O5Dx = 1.442 Mg m3
Mr = 265.2Melting point: 400 K
Orthorhombic, PbcmMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 1996 reflections
a = 12.880 (3) Åθ = 2.8–25.4º
b = 14.299 (3) ŵ = 0.12 mm1
c = 6.6328 (14) ÅT = 296 (2) K
V = 1221.6 (5) Å3Block, yellow
Z = 40.30 × 0.30 × 0.20 mm
F000 = 552

Data collection

Bruker SMART 1000 CCD diffractometer1546 independent reflections
Radiation source: fine-focus sealed tube968 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 296(2) Kθmax = 27.6º
Thin–slice ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −16→16
Tmin = 0.966, Tmax = 0.977k = −17→18
10245 measured reflectionsl = −8→8

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042  w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2977P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
1546 reflectionsΔρmin = −0.13 e Å3
118 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (9)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O40.68298 (15)0.51128 (12)0.25000.0726 (6)
O31.00596 (16)0.52888 (14)0.25000.0896 (8)
O10.68240 (17)−0.10594 (13)0.25000.0887 (8)
O20.52310 (17)−0.06963 (13)0.25000.1081 (10)
N30.61352 (18)−0.04820 (14)0.25000.0582 (6)
N10.72021 (14)0.33126 (12)0.25000.0422 (5)
H10.67210.37300.25000.051*
N20.81817 (14)0.35582 (13)0.25000.0435 (5)
C100.7757 (2)0.52229 (16)0.25000.0489 (6)
C60.69506 (16)0.23623 (15)0.25000.0379 (5)
C80.9648 (2)0.45339 (18)0.25000.0597 (7)
C50.59053 (17)0.21060 (14)0.25000.0436 (6)
H50.53920.25630.25000.052*
C20.74469 (18)0.07505 (15)0.25000.0447 (6)
H20.79570.02900.25000.054*
C40.56352 (18)0.11723 (15)0.25000.0475 (6)
H40.49410.09930.25000.057*
O50.81917 (15)0.60575 (12)0.25000.0768 (7)
C30.64146 (18)0.05094 (15)0.25000.0423 (5)
C10.77167 (17)0.16807 (15)0.25000.0431 (6)
H1A0.84130.18530.25000.052*
C90.84922 (18)0.44293 (16)0.25000.0453 (6)
C71.0288 (2)0.3663 (2)0.25000.0906 (12)
H7A1.03180.34120.11580.136*0.50
H7B0.99800.32110.33870.136*0.50
H7C1.09780.38060.29540.136*0.50
C110.7477 (3)0.68338 (19)0.25000.0908 (11)
H11A0.71530.68820.12010.136*0.50
H11B0.78470.74010.27880.136*0.50
H11C0.69550.67350.35110.136*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0474 (12)0.0424 (10)0.1281 (19)−0.0013 (8)0.0000.000
O30.0517 (12)0.0553 (13)0.162 (2)−0.0184 (10)0.0000.000
O10.0783 (14)0.0355 (10)0.152 (2)0.0124 (10)0.0000.000
O20.0591 (13)0.0402 (11)0.225 (3)−0.0140 (10)0.0000.000
N30.0587 (14)0.0335 (11)0.0824 (16)−0.0003 (11)0.0000.000
N10.0398 (10)0.0318 (10)0.0551 (12)−0.0030 (8)0.0000.000
N20.0430 (11)0.0392 (10)0.0482 (12)−0.0067 (9)0.0000.000
C100.0524 (16)0.0355 (13)0.0588 (16)−0.0074 (11)0.0000.000
C60.0426 (12)0.0333 (11)0.0377 (12)−0.0018 (10)0.0000.000
C80.0493 (15)0.0478 (15)0.0821 (19)−0.0102 (13)0.0000.000
C50.0417 (12)0.0317 (12)0.0575 (14)0.0039 (9)0.0000.000
C20.0434 (13)0.0358 (12)0.0547 (14)0.0065 (10)0.0000.000
C40.0392 (12)0.0369 (12)0.0664 (16)−0.0023 (10)0.0000.000
O50.0622 (12)0.0348 (10)0.1333 (19)−0.0092 (9)0.0000.000
C30.0456 (13)0.0283 (11)0.0530 (14)0.0000 (10)0.0000.000
C10.0381 (12)0.0404 (13)0.0507 (14)−0.0020 (10)0.0000.000
C90.0460 (13)0.0360 (12)0.0537 (14)−0.0081 (10)0.0000.000
C70.0511 (17)0.0568 (17)0.164 (4)−0.0011 (14)0.0000.000
C110.088 (2)0.0336 (14)0.150 (3)−0.0002 (16)0.0000.000

Geometric parameters (Å, °)

O4—C101.204 (3)C5—C41.380 (3)
O3—C81.203 (3)C5—H50.9300
O1—N31.212 (3)C2—C31.374 (3)
O2—N31.204 (3)C2—C11.375 (3)
N3—C31.463 (3)C2—H20.9300
N1—N21.310 (2)C4—C31.381 (3)
N1—C61.397 (3)C4—H40.9300
N1—H10.8600O5—C111.442 (3)
N2—C91.308 (3)C1—H1A0.9300
C10—O51.318 (3)C7—H7A0.9600
C10—C91.478 (3)C7—H7B0.9600
C6—C11.387 (3)C7—H7C0.9600
C6—C51.395 (3)C11—H11A0.9600
C8—C71.494 (4)C11—H11B0.9600
C8—C91.496 (3)C11—H11C0.9600
O2—N3—O1122.3 (2)C3—C4—H4120.6
O2—N3—C3119.0 (2)C10—O5—C11115.2 (2)
O1—N3—C3118.7 (2)C2—C3—C4122.1 (2)
N2—N1—C6118.96 (18)C2—C3—N3118.8 (2)
N2—N1—H1120.5C4—C3—N3119.1 (2)
C6—N1—H1120.5C2—C1—C6120.0 (2)
C9—N2—N1123.4 (2)C2—C1—H1A120.0
O4—C10—O5122.7 (2)C6—C1—H1A120.0
O4—C10—C9122.3 (2)N2—C9—C10122.4 (2)
O5—C10—C9115.0 (2)N2—C9—C8113.5 (2)
C1—C6—C5120.1 (2)C10—C9—C8124.1 (2)
C1—C6—N1121.24 (19)C8—C7—H7A109.5
C5—C6—N1118.64 (19)C8—C7—H7B109.5
O3—C8—C7120.3 (2)H7A—C7—H7B109.5
O3—C8—C9121.9 (2)C8—C7—H7C109.5
C7—C8—C9117.8 (2)H7A—C7—H7C109.5
C4—C5—C6119.8 (2)H7B—C7—H7C109.5
C4—C5—H5120.1O5—C11—H11A109.5
C6—C5—H5120.1O5—C11—H11B109.5
C3—C2—C1119.2 (2)H11A—C11—H11B109.5
C3—C2—H2120.4O5—C11—H11C109.5
C1—C2—H2120.4H11A—C11—H11C109.5
C5—C4—C3118.8 (2)H11B—C11—H11C109.5
C5—C4—H4120.6
C6—N1—N2—C9180.0O1—N3—C3—C4180.0
N2—N1—C6—C10.0C3—C2—C1—C60.0
N2—N1—C6—C5180.0C5—C6—C1—C20.0
C1—C6—C5—C40.0N1—C6—C1—C2180.0
N1—C6—C5—C4180.0N1—N2—C9—C100.0
C6—C5—C4—C30.0N1—N2—C9—C8180.0
O4—C10—O5—C110.0O4—C10—C9—N20.0
C9—C10—O5—C11180.0O5—C10—C9—N2180.0
C1—C2—C3—C40.0O4—C10—C9—C8180.0
C1—C2—C3—N3180.0O5—C10—C9—C80.0
C5—C4—C3—C20.0O3—C8—C9—N2180.0
C5—C4—C3—N3180.0C7—C8—C9—N20.0
O2—N3—C3—C2180.0O3—C8—C9—C100.0
O1—N3—C3—C20.0C7—C8—C9—C10180.0
O2—N3—C3—C40.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.618 (3)130
C2—H2···O3i0.932.553.279 (3)135
C11—H11B···O1ii0.962.573.128 (3)117
N1—H1···O2iii0.862.643.439 (3)154
C5—H5···O2iii0.932.623.467 (4)153
C4iii—H4iii···O40.932.613.518 (3)167

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2083).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker, (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lewis, M., Barnes, C. L., Hathaway, B. A. & Glaser, R. (1999). Acta Cryst. C55, 975–978.
  • Liu, X.-L., Zhao, Y., Li, Z.-G. & Liu, Y.-H. (2008). Acta Cryst. E64, o152. [PMC free article] [PubMed]
  • Liu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.
  • Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979.
  • Mahy, J. P., Gaspard, S. & Mansuy, D. (1993). Biochemistry, 32, 4014–4021. [PubMed]
  • Serbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Gunter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater.7, 1198–1206.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Thami, T., Bassoul, P., Petit, M., Simon, J., Fort, A., Barzoukas, M. & Villaeys, A. (1992). J. Am. Chem. Soc.114, 915–921.
  • Wang, J.-P., Chen, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29–31.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography