PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1467.
Published online 2008 July 12. doi:  10.1107/S1600536808020965
PMCID: PMC2962097

(E)-3-(2-Chloro­phen­yl)-1-(2-fur­yl)prop-2-en-1-one

Abstract

The title compound, C13H9ClO2, adopts an E configuration with respect to the C=C double bond of the propenone unit. The benzene and furyl rings are twisted slightly from each other, making a dihedral angle of 6.47 (7)°. Intra­molecular C—H(...)O and C—H(...)Cl hydrogen bonds generate an S(5)S(5)S(5) ring motif. In the crystal structure, mol­ecules are stacked along the b axis and weak inter­molecular C—H(...)O hydrogen bonds are observed.

Related literature

For related literature on chalcone derivatives, see: Patil et al. (2006 [triangle]); Patil, Ng et al. (2007 [triangle]); Patil, Fun et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]); Fun et al. (2008 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1467-scheme1.jpg

Experimental

Crystal data

  • C13H9ClO2
  • M r = 232.65
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1467-efi1.jpg
  • a = 19.6826 (4) Å
  • b = 3.8395 (1) Å
  • c = 14.0491 (3) Å
  • V = 1061.71 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 100.0 (1) K
  • 0.44 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.865, T max = 0.952
  • 30354 measured reflections
  • 3902 independent reflections
  • 3738 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.092
  • S = 1.09
  • 3902 reflections
  • 145 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1881 Friedel pairs
  • Flack parameter: −0.01 (4)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020965/is2312sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020965/is2312Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

supplementary crystallographic information

Comment

The title compound, (I), whose structure is reported here, is a chalcone derivative that we have prepared; the crystal structures of some of these compounds have been studied previously (Patil et al., 2006; Patil, Ng et al., 2007; Patil, Fun et al., 2007).

In (I), the moleule exhibits an E configuration with respect to the C7═C8 double bond with the C6—C7—C8—C9 torsion angle being 178.45 (10)°. The bond lengths and bond angles in (I) are found to have normal values (Allen et al., 1987; Fun et al., 2008). The phenyl and furyl rings in the molecule is planar with the maximum deviation from planarity being 0.005 (13) Å for atom C6 and 0.004 (11) Å for atom O1, respectively. The dihedral angle between the phenyl and the furyl ring are 6.47 (7)°, indicating that they are slightly twisted from each other. The non-centrosymmmetric crystal of the title compound should exhibit 2nd-order NLO properties.

Intramolecular C—H···O and C—H···Cl hydrogen bonds generate an S(5)S(5)S(5) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are stacked along the b axis. The crystal packing is consolidated by inter and intramolecular C—H···O and C—H···Cl hydrogen bonding interactions.

Experimental

The compound (I) was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol, 1.49 mg) with 2-acetylfuran (0.01 mol, 1.01 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The precipitated compound was recrystallized from N, N-dimethylformamide (DMF).

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H9ClO2F000 = 480
Mr = 232.65Dx = 1.455 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9970 reflections
a = 19.6826 (4) Åθ = 2.5–37.2º
b = 3.8395 (1) ŵ = 0.34 mm1
c = 14.0491 (3) ÅT = 100.0 (1) K
V = 1061.71 (4) Å3Block, colourless
Z = 40.44 × 0.23 × 0.15 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3902 independent reflections
Radiation source: fine-focus sealed tube3738 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 100.0(1) Kθmax = 32.8º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −29→29
Tmin = 0.865, Tmax = 0.952k = −5→5
30354 measured reflectionsl = −21→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.06P)2 + 0.0834P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.42 e Å3
3902 reflectionsΔρmin = −0.19 e Å3
145 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1881 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (4)
Secondary atom site location: difference Fourier map

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.717808 (15)0.28404 (8)0.54723 (2)0.02583 (8)
O10.56257 (5)−0.2638 (2)0.10796 (7)0.02292 (18)
O20.52989 (4)−0.2045 (3)0.35622 (8)0.02328 (19)
C130.47093 (6)−0.4899 (3)0.17874 (10)0.0209 (2)
H13A0.4398−0.55720.22510.025*
C10.75871 (6)0.3597 (3)0.43900 (8)0.01692 (19)
C20.82334 (6)0.5030 (3)0.44283 (9)0.0203 (2)
H2A0.84290.55810.50120.024*
C30.85871 (6)0.5636 (3)0.35885 (10)0.0205 (2)
H3A0.90220.65750.36060.025*
C40.82839 (6)0.4826 (3)0.27213 (9)0.0188 (2)
H4A0.85160.52520.21570.023*
C50.76378 (6)0.3389 (3)0.26935 (8)0.0173 (2)
H5A0.74440.28620.21070.021*
C60.72688 (6)0.2709 (3)0.35301 (9)0.01496 (19)
C70.65913 (5)0.1151 (3)0.35030 (8)0.01663 (18)
H7A0.63480.11050.40700.020*
C80.62901 (5)−0.0215 (3)0.27343 (8)0.0177 (2)
H8A0.6512−0.01680.21500.021*
C90.56065 (6)−0.1798 (3)0.28067 (8)0.01660 (19)
C100.53018 (6)−0.3151 (3)0.19325 (9)0.0167 (2)
C110.52194 (7)−0.4069 (4)0.03974 (10)0.0256 (2)
H11A0.5316−0.4062−0.02510.031*
C120.46571 (7)−0.5500 (4)0.07910 (10)0.0238 (2)
H12A0.4307−0.66440.04740.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02834 (15)0.03521 (16)0.01394 (11)−0.00595 (11)0.00082 (12)0.00028 (14)
O10.0203 (4)0.0318 (5)0.0166 (4)−0.0043 (3)0.0011 (3)−0.0022 (3)
O20.0198 (4)0.0327 (5)0.0174 (4)−0.0050 (3)0.0022 (3)−0.0006 (4)
C130.0175 (5)0.0221 (5)0.0231 (5)−0.0020 (4)−0.0007 (4)−0.0002 (4)
C10.0184 (5)0.0190 (4)0.0134 (4)0.0011 (4)−0.0005 (4)0.0002 (4)
C20.0191 (5)0.0228 (5)0.0189 (5)−0.0005 (4)−0.0045 (4)−0.0002 (4)
C30.0152 (4)0.0215 (5)0.0249 (5)−0.0003 (4)−0.0026 (4)0.0012 (4)
C40.0169 (5)0.0198 (5)0.0196 (5)0.0003 (4)0.0013 (4)0.0026 (4)
C50.0168 (5)0.0191 (5)0.0159 (5)0.0005 (4)−0.0001 (4)0.0005 (4)
C60.0146 (4)0.0153 (4)0.0149 (5)0.0013 (3)−0.0011 (4)0.0004 (4)
C70.0156 (4)0.0183 (4)0.0160 (4)−0.0008 (3)0.0001 (4)0.0013 (4)
C80.0145 (4)0.0211 (5)0.0177 (5)−0.0015 (4)0.0005 (4)−0.0010 (4)
C90.0151 (4)0.0173 (4)0.0174 (5)0.0005 (3)−0.0006 (4)0.0000 (4)
C100.0162 (5)0.0180 (5)0.0160 (5)0.0003 (3)0.0010 (4)−0.0005 (4)
C110.0267 (6)0.0319 (6)0.0182 (5)−0.0006 (5)−0.0020 (5)−0.0040 (5)
C120.0221 (5)0.0231 (5)0.0263 (6)−0.0013 (4)−0.0063 (4)−0.0036 (5)

Geometric parameters (Å, °)

Cl1—C11.7449 (12)C4—C51.3868 (16)
O1—C111.3637 (16)C4—H4A0.9300
O1—C101.3715 (15)C5—C61.4061 (17)
O2—C91.2256 (15)C5—H5A0.9300
C13—C101.3610 (16)C6—C71.4622 (16)
C13—C121.4224 (19)C7—C81.3389 (16)
C13—H13A0.9300C7—H7A0.9300
C1—C21.3869 (17)C8—C91.4800 (15)
C1—C61.4030 (16)C8—H8A0.9300
C2—C31.3895 (18)C9—C101.4621 (16)
C2—H2A0.9300C11—C121.3537 (19)
C3—C41.3918 (18)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
C11—O1—C10106.48 (10)C1—C6—C7121.95 (11)
C10—C13—C12106.81 (11)C5—C6—C7121.69 (11)
C10—C13—H13A126.6C8—C7—C6125.81 (11)
C12—C13—H13A126.6C8—C7—H7A117.1
C2—C1—C6122.63 (11)C6—C7—H7A117.1
C2—C1—Cl1117.10 (9)C7—C8—C9120.53 (11)
C6—C1—Cl1120.26 (9)C7—C8—H8A119.7
C1—C2—C3119.54 (11)C9—C8—H8A119.7
C1—C2—H2A120.2O2—C9—C10119.82 (10)
C3—C2—H2A120.2O2—C9—C8122.72 (11)
C2—C3—C4119.41 (10)C10—C9—C8117.46 (10)
C2—C3—H3A120.3C13—C10—O1109.77 (11)
C4—C3—H3A120.3C13—C10—C9130.74 (11)
C5—C4—C3120.44 (11)O1—C10—C9119.49 (10)
C5—C4—H4A119.8C12—C11—O1110.84 (12)
C3—C4—H4A119.8C12—C11—H11A124.6
C4—C5—C6121.60 (11)O1—C11—H11A124.6
C4—C5—H5A119.2C11—C12—C13106.10 (11)
C6—C5—H5A119.2C11—C12—H12A127.0
C1—C6—C5116.36 (10)C13—C12—H12A127.0
C6—C1—C2—C30.14 (18)C7—C8—C9—O2−2.60 (17)
Cl1—C1—C2—C3178.98 (9)C7—C8—C9—C10178.35 (11)
C1—C2—C3—C40.63 (17)C12—C13—C10—O1−0.30 (14)
C2—C3—C4—C5−0.74 (18)C12—C13—C10—C9178.44 (12)
C3—C4—C5—C60.08 (18)C11—O1—C10—C130.67 (14)
C2—C1—C6—C5−0.76 (16)C11—O1—C10—C9−178.23 (11)
Cl1—C1—C6—C5−179.57 (9)O2—C9—C10—C13−3.41 (19)
C2—C1—C6—C7179.05 (11)C8—C9—C10—C13175.66 (12)
Cl1—C1—C6—C70.24 (15)O2—C9—C10—O1175.22 (11)
C4—C5—C6—C10.65 (16)C8—C9—C10—O1−5.70 (15)
C4—C5—C6—C7−179.17 (10)C10—O1—C11—C12−0.80 (15)
C1—C6—C7—C8−170.09 (11)O1—C11—C12—C130.62 (15)
C5—C6—C7—C89.72 (17)C10—C13—C12—C11−0.19 (15)
C6—C7—C8—C9178.45 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.523.4126 (14)161
C11—H11A···O2ii0.932.553.1488 (17)123
C7—H7A···Cl10.932.643.0675 (12)108
C7—H7A···O20.932.502.8255 (14)101
C8—H8A···O10.932.492.8249 (15)101

Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+1, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2312).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Jebas, S. R., Razak, I. A., Patil, P. S., Dharmaprakash, S. M. & Deepak D’Silva, E. (2008). Acta Cryst. E64, o1177. [PMC free article] [PubMed]
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography