PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1464.
Published online 2008 July 12. doi:  10.1107/S1600536808020795
PMCID: PMC2962094

(E)-1-(4-Bromo­phen­yl)-3-(2-chloro­phen­yl)prop-2-en-1-one

Abstract

The structure of the title compound, C15H10BrClO, comprises two substituted benzene rings bridged by a prop-2-en-1-one group and exists in an E configuration about the C=N double bond. The dihedral angle formed between the 4-bromo­phenyl and 2-chloro­phenyl rings is 23.77 (18)°. In the crystal structure, the mol­ecules are linked by weak C—H(...)O inter­actions, forming a supra­molecular zigzag chain. Intramolecular C—H(...)Cl and C—H(...)O hydrogen bonds are also present.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Patil et al. (2007 [triangle]); Moorthi et al. (2005 [triangle]). For applications of chalcones, see: Gu et al. (2008 [triangle]); Mishra et al. (2008 [triangle]); Nel et al. (1998 [triangle]); Patil & Dharmaprakash (2008 [triangle]); Wang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1464-scheme1.jpg

Experimental

Crystal data

  • C15H10BrClO
  • M r = 321.59
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1464-efi1.jpg
  • a = 27.8720 (6) Å
  • b = 3.9235 (1) Å
  • c = 11.6408 (2) Å
  • V = 1272.99 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.42 mm−1
  • T = 100.0 (1) K
  • 0.33 × 0.18 × 0.09 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.392, T max = 0.736
  • 9658 measured reflections
  • 3495 independent reflections
  • 2938 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.086
  • S = 1.03
  • 3495 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.44 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1545 Friedel pairs
  • Flack parameter: 0.011 (12)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020795/tk2281sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020795/tk2281Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcone and its derivatives have a wide range of applications ranging from bioactivities (Mishra et al., 2008; Nel et al., 1998) to materials with non-linear optical (NLO) properties (Gu et al., 2008 & Moorthi et al., 2005). As part of our continuing interest in the latter application (Patil & Dharmaprakash, 2008), the synthesis and structure of the title compound (I, Fig. 1) is described herein.The non-centrosymmetric crystal of the title compound should exhibit 2nd-order NLO properties.

The structure of (I) comprises two six-membered rings bridged by a pro-2-en-1-one moiety. The molecule exists in the E conformation with respect to the C8=C9 double bond [1.328 (5) Å]. The molecule is not planar as seen in the dihedral angle of 23.77 (18)° formed between the 4-bromophenyl and 2-chlorophenyl rings. Further, the mean plane through the O1, C6, C7 & C8 atoms forms angles, respectively, of 13.2 (2)° and 11.0 (2)° with the planes of 4-bromophenyl and 2-chlorophenyl rings. Weak C9–H9A···O1 and C9—H9A···Cl1 intramolecular interactions (Fig. 1 & Table 1) generate S(5) ring motifs (Bernstein et al., 1995). The derived bond distances and angles are comparable with those determined in the closely related structures (e.g. Patil et al., 2007 & Sathiya Moorthi et al., 2005).

In the crystal packing (Fig. 2), the molecules are linked into a supramolecular chain via C-H···O interactions aligned along the c-direction, Table 1.

Experimental

Compound (I) was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol, 1.49 g) with 4-bromoacetophenone (0.01 mol, 1.99 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 2 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from an acetone solution of (I).

Refinement

All H atoms were in the riding model approximation with C—H = 0.93 Å, and with Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines represent intramolecular C—H···O and C—H···Cl interactions. ...
Fig. 2.
A view down the b-axis of the crystal packing in (I), highlighting a supramolecular molecular chain aligned along the c axis. The C-H···O interactions are shown as dashed lines.

Crystal data

C15H10BrClOF000 = 640
Mr = 321.59Dx = 1.678 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3495 reflections
a = 27.8720 (6) Åθ = 1.5–30.0º
b = 3.9235 (1) ŵ = 3.42 mm1
c = 11.6408 (2) ÅT = 100.0 (1) K
V = 1272.99 (5) Å3Block, colorless
Z = 40.33 × 0.18 × 0.09 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer3495 independent reflections
Radiation source: fine-focus sealed tube2938 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 1.5º
ω scansh = −36→39
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −5→3
Tmin = 0.392, Tmax = 0.736l = −16→16
9658 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + 1.3265P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.41 e Å3
3495 reflectionsΔρmin = −0.44 e Å3
163 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1545 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.011 (12)
Secondary atom site location: difference Fourier map

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.165695 (11)0.71499 (8)0.27469 (5)0.02346 (10)
Cl1−0.18444 (4)−0.5643 (3)0.47411 (9)0.0264 (2)
O1−0.03953 (10)0.0955 (8)0.5096 (2)0.0254 (6)
C10.03194 (13)0.2560 (9)0.2561 (3)0.0187 (8)
H1A0.01320.15020.20040.022*
C20.07645 (13)0.3879 (11)0.2266 (3)0.0192 (8)
H2A0.08780.37200.15170.023*
C30.10349 (14)0.5426 (9)0.3106 (3)0.0192 (8)
C40.08725 (13)0.5741 (10)0.4230 (3)0.0202 (8)
H4A0.10590.68310.47820.024*
C50.04319 (13)0.4411 (9)0.4510 (3)0.0177 (8)
H5A0.03210.45850.52610.021*
C60.01502 (13)0.2810 (9)0.3686 (3)0.0156 (7)
C7−0.03108 (13)0.1245 (10)0.4073 (3)0.0180 (8)
C8−0.06613 (13)0.0089 (10)0.3202 (3)0.0185 (8)
H8A−0.06100.05430.24280.022*
C9−0.10501 (14)−0.1603 (10)0.3534 (3)0.0192 (8)
H9A−0.1074−0.20790.43150.023*
C10−0.14477 (11)−0.2809 (8)0.2809 (5)0.0180 (6)
C11−0.18352 (14)−0.4627 (10)0.3288 (3)0.0206 (8)
C12−0.22195 (13)−0.5699 (9)0.2625 (4)0.0246 (8)
H12A−0.2470−0.69070.29600.030*
C13−0.22293 (15)−0.4970 (11)0.1464 (4)0.0276 (9)
H13A−0.2488−0.56620.10170.033*
C14−0.18509 (15)−0.3199 (11)0.0968 (3)0.0239 (8)
H14A−0.1856−0.27190.01850.029*
C15−0.14652 (15)−0.2140 (10)0.1632 (3)0.0213 (8)
H15A−0.1214−0.09630.12870.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01631 (16)0.02108 (18)0.03298 (17)−0.00286 (13)0.0010 (2)0.0002 (3)
Cl10.0257 (5)0.0253 (5)0.0282 (4)−0.0021 (4)0.0095 (4)0.0033 (4)
O10.0260 (16)0.0329 (18)0.0171 (13)−0.0047 (13)0.0038 (11)0.0008 (11)
C10.0159 (16)0.0214 (19)0.019 (2)−0.0002 (13)−0.0025 (13)0.0006 (14)
C20.0177 (19)0.021 (2)0.0187 (16)−0.0023 (15)−0.0003 (14)0.0018 (15)
C30.0170 (18)0.0126 (19)0.0278 (19)0.0004 (14)−0.0001 (14)0.0023 (14)
C40.0186 (19)0.017 (2)0.0248 (19)0.0025 (15)−0.0068 (15)−0.0046 (15)
C50.0180 (18)0.017 (2)0.0180 (17)0.0023 (14)0.0011 (13)−0.0021 (14)
C60.0138 (17)0.0161 (19)0.0169 (16)0.0025 (14)−0.0010 (13)0.0003 (13)
C70.0176 (18)0.015 (2)0.0218 (17)0.0042 (14)−0.0011 (14)0.0011 (14)
C80.0153 (18)0.022 (2)0.0178 (16)−0.0010 (15)0.0015 (14)0.0020 (14)
C90.018 (2)0.020 (2)0.0195 (16)0.0021 (15)−0.0003 (14)0.0000 (14)
C100.0150 (14)0.0143 (15)0.0248 (15)0.0030 (12)0.001 (2)0.0027 (19)
C110.0184 (19)0.015 (2)0.0280 (19)0.0060 (15)0.0042 (15)0.0010 (15)
C120.0177 (17)0.0158 (18)0.040 (2)0.0019 (13)0.0016 (18)−0.004 (2)
C130.020 (2)0.022 (2)0.041 (2)0.0077 (17)−0.0090 (18)−0.0105 (18)
C140.025 (2)0.025 (2)0.0220 (19)0.0065 (17)−0.0067 (16)−0.0013 (16)
C150.021 (2)0.017 (2)0.0257 (19)−0.0003 (15)0.0010 (15)0.0019 (15)

Geometric parameters (Å, °)

Br1—C31.907 (4)C8—C91.328 (5)
Cl1—C111.738 (4)C8—H8A0.9300
O1—C71.219 (4)C9—C101.472 (6)
C1—C21.387 (5)C9—H9A0.9300
C1—C61.396 (5)C10—C151.395 (7)
C1—H1A0.9300C10—C111.409 (5)
C2—C31.376 (5)C11—C121.386 (6)
C2—H2A0.9300C12—C131.381 (7)
C3—C41.390 (5)C12—H12A0.9300
C4—C51.373 (5)C13—C141.389 (6)
C4—H4A0.9300C13—H13A0.9300
C5—C61.389 (5)C14—C151.388 (6)
C5—H5A0.9300C14—H14A0.9300
C6—C71.493 (5)C15—H15A0.9300
C7—C81.479 (5)
C2—C1—C6120.5 (3)C7—C8—H8A120.2
C2—C1—H1A119.7C8—C9—C10127.4 (4)
C6—C1—H1A119.7C8—C9—H9A116.3
C3—C2—C1118.6 (3)C10—C9—H9A116.3
C3—C2—H2A120.7C15—C10—C11117.2 (4)
C1—C2—H2A120.7C15—C10—C9122.0 (3)
C2—C3—C4122.0 (4)C11—C10—C9120.8 (5)
C2—C3—Br1119.9 (3)C12—C11—C10121.7 (4)
C4—C3—Br1118.1 (3)C12—C11—Cl1117.5 (3)
C5—C4—C3118.7 (3)C10—C11—Cl1120.8 (3)
C5—C4—H4A120.6C13—C12—C11119.8 (4)
C3—C4—H4A120.6C13—C12—H12A120.1
C4—C5—C6120.9 (3)C11—C12—H12A120.1
C4—C5—H5A119.6C12—C13—C14119.7 (4)
C6—C5—H5A119.6C12—C13—H13A120.1
C5—C6—C1119.2 (3)C14—C13—H13A120.1
C5—C6—C7117.7 (3)C15—C14—C13120.4 (4)
C1—C6—C7123.0 (3)C15—C14—H14A119.8
O1—C7—C8120.9 (4)C13—C14—H14A119.8
O1—C7—C6119.9 (3)C14—C15—C10121.2 (4)
C8—C7—C6119.2 (3)C14—C15—H15A119.4
C9—C8—C7119.5 (3)C10—C15—H15A119.4
C9—C8—H8A120.2
C6—C1—C2—C30.1 (6)C6—C7—C8—C9173.5 (4)
C1—C2—C3—C4−0.9 (6)C7—C8—C9—C10176.9 (3)
C1—C2—C3—Br1178.1 (3)C8—C9—C10—C15−2.7 (6)
C2—C3—C4—C51.1 (6)C8—C9—C10—C11179.0 (4)
Br1—C3—C4—C5−177.9 (3)C15—C10—C11—C12−0.3 (5)
C3—C4—C5—C6−0.7 (6)C9—C10—C11—C12178.1 (3)
C4—C5—C6—C10.0 (6)C15—C10—C11—Cl1179.1 (3)
C4—C5—C6—C7176.4 (3)C9—C10—C11—Cl1−2.5 (5)
C2—C1—C6—C50.3 (6)C10—C11—C12—C13−0.4 (6)
C2—C1—C6—C7−175.9 (4)Cl1—C11—C12—C13−179.8 (3)
C5—C6—C7—O1−10.8 (5)C11—C12—C13—C140.7 (6)
C1—C6—C7—O1165.5 (4)C12—C13—C14—C15−0.4 (6)
C5—C6—C7—C8168.8 (3)C13—C14—C15—C10−0.2 (6)
C1—C6—C7—C8−15.0 (5)C11—C10—C15—C140.6 (5)
O1—C7—C8—C9−7.0 (6)C9—C10—C15—C14−177.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.533.191 (4)128
C9—H9A···Cl10.932.613.064 (4)111
C9—H9A···O10.932.412.765 (5)102

Symmetry codes: (i) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2281).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 091118.
  • Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem.43, 1530–1535. [PubMed]
  • Moorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483–o485.
  • Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett.39, 5623–5626.
  • Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.
  • Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett.62, 451–453.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst C60, o696–o698. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography