PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1463.
Published online 2008 July 12. doi:  10.1107/S1600536808019958
PMCID: PMC2962093

4-Benzhydryl-1-cinnamylpiperazin-1-ium nitrate

Abstract

In the title compound, C26H29N2 +·NO3 , the dihedral angle formed by the phenyl rings of the benzhydryl group is 66.18 (9)°. Crystal cohesion is enforced by cation–anion C—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For the use of amine derivatives in coordination chemisty, see: Manzur et al. (2007 [triangle]); Ismayilov et al. (2007 [triangle]); Austria et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1463-scheme1.jpg

Experimental

Crystal data

  • C26H29N2 +·NO3
  • M r = 431.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1463-efi1.jpg
  • a = 18.6368 (17) Å
  • b = 10.8990 (10) Å
  • c = 12.0271 (10) Å
  • β = 107.397 (2)°
  • V = 2331.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.27 × 0.18 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.978, T max = 0.985
  • 22444 measured reflections
  • 5328 independent reflections
  • 2413 reflections with I > 2σ(I)
  • R int = 0.100

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.178
  • S = 1.03
  • 5328 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019958/rz2224sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019958/rz2224Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the past five years, we have focused on the chemistry of amine derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Manzur et al. 2007; Ismayilov et al. 2007; Austria et al. 2007). We report here the crystal structure of the title compound, 4-benzhydryl-1-cinnamylpiperazin-1-ium nitrate.

In the title compound (Fig. 1), the piperazine ring is protonated at the N2 atom and adopts the usual chair conformation. The phenyl rings of the benzhydryl group form a dihedral angle of 66.18 (9)°. The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonds occurring between adjacent anions and cations (Table 1, Fig. 2).

Experimental

4-Benzhydryl-1-cinnamylpiperazin-1-ium nitrate (3 mmol) was dissolved in ethanol (20 ml). The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93–0.97 Å, N—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
A view of the title compound with the atom numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the a axis. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C26H29N2+·NO3F000 = 920
Mr = 431.52Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 1178 reflections
a = 18.6368 (17) Åθ = 2.3–24.4º
b = 10.8990 (10) ŵ = 0.08 mm1
c = 12.0271 (10) ÅT = 293 (2) K
β = 107.397 (2)ºBlock, colourless
V = 2331.2 (4) Å30.27 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer5328 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.100
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.0º
ω scansh = −24→24
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −14→14
Tmin = 0.978, Tmax = 0.985l = −15→15
22444 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.178  w = 1/[σ2(Fo2) + (0.0622P)2 + 0.0525P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5328 reflectionsΔρmax = 0.15 e Å3
289 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.31523 (11)0.58781 (18)0.45974 (16)0.0422 (5)
N20.30973 (11)0.42385 (18)0.26651 (16)0.0460 (6)
H2N0.31540.35030.30200.055*
C10.31968 (14)0.6166 (2)0.5816 (2)0.0437 (6)
H10.32440.53910.62440.052*
C20.38828 (13)0.6943 (2)0.6397 (2)0.0383 (6)
C30.42973 (14)0.6712 (2)0.7539 (2)0.0468 (7)
H30.41480.60860.79470.056*
C40.49302 (15)0.7395 (3)0.8085 (2)0.0561 (8)
H40.52040.72280.88530.067*
C50.51513 (15)0.8324 (3)0.7483 (3)0.0582 (8)
H50.55810.87770.78400.070*
C60.47373 (16)0.8579 (3)0.6358 (2)0.0569 (7)
H60.48830.92180.59600.068*
C70.41097 (15)0.7900 (2)0.5814 (2)0.0479 (7)
H70.38340.80810.50500.057*
C80.24792 (14)0.6793 (2)0.5869 (2)0.0468 (7)
C90.21408 (16)0.7710 (3)0.5104 (2)0.0575 (8)
H90.23600.79740.45460.069*
C100.14769 (17)0.8243 (3)0.5158 (3)0.0713 (9)
H100.12560.88650.46410.086*
C110.11438 (18)0.7855 (4)0.5974 (3)0.0812 (11)
H110.06890.81900.59930.097*
C120.1490 (2)0.6975 (4)0.6754 (3)0.0869 (11)
H120.12790.67360.73310.104*
C130.21470 (17)0.6434 (3)0.6702 (3)0.0683 (9)
H130.23690.58220.72320.082*
C140.38274 (14)0.5241 (2)0.4509 (2)0.0486 (7)
H14A0.38850.44720.49330.058*
H14B0.42670.57410.48620.058*
C150.37754 (14)0.4990 (2)0.3257 (2)0.0512 (7)
H15A0.37520.57630.28480.061*
H15B0.42240.45590.32240.061*
C160.24141 (14)0.4834 (2)0.2819 (2)0.0509 (7)
H16A0.19810.43090.24990.061*
H16B0.23240.56050.23960.061*
C170.25099 (15)0.5069 (2)0.4092 (2)0.0511 (7)
H17A0.20560.54430.41750.061*
H17B0.25860.42950.45100.061*
C180.30351 (17)0.4038 (3)0.1408 (2)0.0609 (8)
H18A0.29820.48270.10180.073*
H18B0.34970.36650.13550.073*
C190.23928 (16)0.3248 (3)0.0793 (2)0.0593 (8)
H190.23160.25310.11610.071*
C200.19265 (16)0.3493 (3)−0.0233 (2)0.0628 (8)
H200.19750.4255−0.05500.075*
C210.13313 (17)0.2680 (3)−0.0937 (3)0.0636 (8)
C220.10066 (18)0.2921 (3)−0.2118 (3)0.0828 (11)
H220.11390.3635−0.24320.099*
C230.0498 (2)0.2140 (5)−0.2832 (4)0.1048 (14)
H230.03000.2314−0.36220.126*
C240.0283 (2)0.1098 (5)−0.2373 (4)0.1075 (15)
H24−0.00620.0564−0.28540.129*
C250.0578 (2)0.0840 (4)−0.1204 (4)0.0945 (12)
H250.04310.0137−0.08930.113*
C260.10931 (17)0.1634 (3)−0.0498 (3)0.0749 (10)
H260.12850.14620.02930.090*
O10.29203 (17)0.1418 (2)0.2790 (2)0.1197 (10)
O20.35493 (15)0.0310 (2)0.4192 (2)0.0982 (9)
O30.36372 (13)0.2268 (2)0.42714 (19)0.0849 (7)
N30.33744 (15)0.1316 (3)0.3756 (2)0.0622 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0398 (13)0.0489 (13)0.0382 (12)−0.0055 (10)0.0118 (9)−0.0046 (10)
N20.0558 (15)0.0439 (13)0.0385 (13)−0.0008 (11)0.0143 (10)−0.0009 (10)
C10.0532 (17)0.0407 (15)0.0381 (15)−0.0041 (12)0.0151 (12)−0.0006 (12)
C20.0403 (15)0.0397 (15)0.0359 (15)−0.0006 (11)0.0127 (11)−0.0034 (11)
C30.0532 (18)0.0455 (16)0.0401 (16)0.0042 (13)0.0114 (13)0.0018 (12)
C40.0506 (19)0.070 (2)0.0406 (17)0.0096 (15)0.0022 (13)−0.0071 (15)
C50.0488 (18)0.065 (2)0.060 (2)−0.0100 (15)0.0149 (15)−0.0179 (16)
C60.062 (2)0.0584 (18)0.0545 (19)−0.0135 (15)0.0245 (15)−0.0067 (15)
C70.0544 (18)0.0495 (16)0.0373 (15)−0.0059 (13)0.0101 (12)0.0002 (12)
C80.0466 (16)0.0524 (17)0.0412 (16)−0.0062 (13)0.0127 (13)−0.0071 (13)
C90.0512 (19)0.063 (2)0.0585 (19)0.0032 (15)0.0174 (14)−0.0024 (15)
C100.057 (2)0.075 (2)0.073 (2)0.0049 (17)0.0044 (17)−0.0085 (17)
C110.045 (2)0.118 (3)0.078 (3)0.005 (2)0.0148 (19)−0.025 (2)
C120.065 (2)0.133 (3)0.071 (2)−0.007 (2)0.0333 (19)−0.008 (2)
C130.058 (2)0.092 (2)0.058 (2)−0.0034 (17)0.0229 (16)0.0073 (17)
C140.0478 (18)0.0520 (17)0.0444 (17)−0.0014 (13)0.0112 (13)−0.0062 (13)
C150.0487 (18)0.0570 (18)0.0492 (18)−0.0074 (13)0.0168 (13)−0.0066 (13)
C160.0438 (17)0.0532 (17)0.0530 (18)−0.0005 (13)0.0102 (13)−0.0064 (13)
C170.0460 (17)0.0564 (18)0.0512 (17)−0.0112 (13)0.0149 (12)−0.0099 (14)
C180.074 (2)0.074 (2)0.0351 (17)0.0019 (16)0.0172 (14)−0.0052 (14)
C190.070 (2)0.064 (2)0.0401 (17)0.0021 (16)0.0108 (15)−0.0114 (14)
C200.069 (2)0.064 (2)0.055 (2)0.0096 (16)0.0179 (16)−0.0050 (15)
C210.0481 (19)0.080 (2)0.060 (2)0.0171 (16)0.0123 (16)−0.0114 (17)
C220.067 (2)0.105 (3)0.064 (2)0.010 (2)−0.0004 (17)−0.006 (2)
C230.071 (3)0.151 (4)0.074 (3)−0.005 (3)−0.005 (2)−0.021 (3)
C240.056 (3)0.155 (4)0.102 (4)−0.007 (3)0.008 (2)−0.049 (3)
C250.060 (2)0.115 (3)0.110 (3)−0.007 (2)0.028 (2)−0.024 (3)
C260.060 (2)0.095 (3)0.068 (2)0.0024 (19)0.0161 (17)−0.017 (2)
O10.144 (2)0.121 (2)0.0685 (17)−0.0040 (18)−0.0074 (17)0.0157 (16)
O20.163 (3)0.0587 (14)0.0891 (18)0.0367 (15)0.0623 (16)0.0238 (13)
O30.105 (2)0.0611 (15)0.0901 (17)−0.0110 (13)0.0315 (14)−0.0119 (13)
N30.0805 (19)0.0556 (17)0.0572 (18)0.0114 (15)0.0309 (14)0.0090 (15)

Geometric parameters (Å, °)

N1—C171.465 (3)C14—C151.505 (3)
N1—C141.468 (3)C14—H14A0.9700
N1—C11.477 (3)C14—H14B0.9700
N2—C161.489 (3)C15—H15A0.9700
N2—C181.498 (3)C15—H15B0.9700
N2—C151.496 (3)C16—C171.510 (3)
N2—H2N0.9001C16—H16A0.9700
C1—C81.520 (3)C16—H16B0.9700
C1—C21.518 (3)C17—H17A0.9700
C1—H10.9800C17—H17B0.9700
C2—C31.382 (3)C18—C191.480 (4)
C2—C71.391 (3)C18—H18A0.9700
C3—C41.383 (3)C18—H18B0.9700
C3—H30.9300C19—C201.307 (3)
C4—C51.377 (4)C19—H190.9300
C4—H40.9300C20—C211.473 (4)
C5—C61.371 (4)C20—H200.9300
C5—H50.9300C21—C261.385 (4)
C6—C71.374 (3)C21—C221.392 (4)
C6—H60.9300C22—C231.369 (4)
C7—H70.9300C22—H220.9300
C8—C91.377 (3)C23—C241.374 (5)
C8—C131.382 (4)C23—H230.9300
C9—C101.386 (4)C24—C251.377 (5)
C9—H90.9300C24—H240.9300
C10—C111.375 (4)C25—C261.380 (4)
C10—H100.9300C25—H250.9300
C11—C121.362 (4)C26—H260.9300
C11—H110.9300O1—N31.221 (3)
C12—C131.378 (4)O2—N31.217 (3)
C12—H120.9300O3—N31.233 (3)
C13—H130.9300
C17—N1—C14107.27 (19)N1—C14—H14B109.4
C17—N1—C1109.66 (19)C15—C14—H14B109.4
C14—N1—C1112.15 (18)H14A—C14—H14B108.0
C16—N2—C18112.2 (2)N2—C15—C14111.6 (2)
C16—N2—C15109.51 (19)N2—C15—H15A109.3
C18—N2—C15111.1 (2)C14—C15—H15A109.3
C16—N2—H2N108.2N2—C15—H15B109.3
C18—N2—H2N108.2C14—C15—H15B109.3
C15—N2—H2N107.4H15A—C15—H15B108.0
N1—C1—C8110.39 (19)N2—C16—C17110.7 (2)
N1—C1—C2111.41 (19)N2—C16—H16A109.5
C8—C1—C2111.1 (2)C17—C16—H16A109.5
N1—C1—H1107.9N2—C16—H16B109.5
C8—C1—H1107.9C17—C16—H16B109.5
C2—C1—H1107.9H16A—C16—H16B108.1
C3—C2—C7118.3 (2)N1—C17—C16110.9 (2)
C3—C2—C1120.0 (2)N1—C17—H17A109.5
C7—C2—C1121.8 (2)C16—C17—H17A109.5
C2—C3—C4121.2 (2)N1—C17—H17B109.5
C2—C3—H3119.4C16—C17—H17B109.5
C4—C3—H3119.4H17A—C17—H17B108.0
C5—C4—C3119.5 (3)C19—C18—N2113.3 (2)
C5—C4—H4120.3C19—C18—H18A108.9
C3—C4—H4120.3N2—C18—H18A108.9
C6—C5—C4120.0 (3)C19—C18—H18B108.9
C6—C5—H5120.0N2—C18—H18B108.9
C4—C5—H5120.0H18A—C18—H18B107.7
C5—C6—C7120.6 (3)C20—C19—C18124.3 (3)
C5—C6—H6119.7C20—C19—H19117.9
C7—C6—H6119.7C18—C19—H19117.9
C6—C7—C2120.5 (2)C19—C20—C21126.4 (3)
C6—C7—H7119.8C19—C20—H20116.8
C2—C7—H7119.8C21—C20—H20116.8
C9—C8—C13118.3 (3)C26—C21—C22117.0 (3)
C9—C8—C1122.1 (2)C26—C21—C20123.2 (3)
C13—C8—C1119.6 (2)C22—C21—C20119.7 (3)
C8—C9—C10120.6 (3)C23—C22—C21122.0 (4)
C8—C9—H9119.7C23—C22—H22119.0
C10—C9—H9119.7C21—C22—H22119.0
C11—C10—C9120.3 (3)C22—C23—C24119.5 (4)
C11—C10—H10119.8C22—C23—H23120.2
C9—C10—H10119.8C24—C23—H23120.2
C12—C11—C10119.1 (3)C23—C24—C25120.2 (4)
C12—C11—H11120.4C23—C24—H24119.9
C10—C11—H11120.4C25—C24—H24119.9
C11—C12—C13120.9 (3)C24—C25—C26119.5 (4)
C11—C12—H12119.5C24—C25—H25120.2
C13—C12—H12119.5C26—C25—H25120.2
C12—C13—C8120.6 (3)C25—C26—C21121.6 (3)
C12—C13—H13119.7C25—C26—H26119.2
C8—C13—H13119.7C21—C26—H26119.2
N1—C14—C15111.0 (2)O2—N3—O1120.8 (3)
N1—C14—H14A109.4O2—N3—O3121.8 (3)
C15—C14—H14A109.4O1—N3—O3117.4 (3)
C17—N1—C1—C8−59.4 (3)C9—C8—C13—C120.6 (4)
C14—N1—C1—C8−178.4 (2)C1—C8—C13—C12−178.9 (3)
C17—N1—C1—C2176.61 (19)C17—N1—C14—C1561.1 (3)
C14—N1—C1—C257.6 (3)C1—N1—C14—C15−178.4 (2)
N1—C1—C2—C3−139.5 (2)C16—N2—C15—C1453.2 (3)
C8—C1—C2—C396.9 (3)C18—N2—C15—C14177.7 (2)
N1—C1—C2—C740.9 (3)N1—C14—C15—N2−58.1 (3)
C8—C1—C2—C7−82.6 (3)C18—N2—C16—C17−177.7 (2)
C7—C2—C3—C4−1.2 (4)C15—N2—C16—C17−53.8 (3)
C1—C2—C3—C4179.2 (2)C14—N1—C17—C16−62.3 (3)
C2—C3—C4—C50.1 (4)C1—N1—C17—C16175.7 (2)
C3—C4—C5—C61.2 (4)N2—C16—C17—N160.1 (3)
C4—C5—C6—C7−1.3 (4)C16—N2—C18—C19−59.8 (3)
C5—C6—C7—C20.2 (4)C15—N2—C18—C19177.2 (2)
C3—C2—C7—C61.1 (4)N2—C18—C19—C20134.3 (3)
C1—C2—C7—C6−179.4 (2)C18—C19—C20—C21172.9 (3)
N1—C1—C8—C9−43.9 (3)C19—C20—C21—C2613.1 (5)
C2—C1—C8—C980.2 (3)C19—C20—C21—C22−163.8 (3)
N1—C1—C8—C13135.6 (2)C26—C21—C22—C23−2.7 (5)
C2—C1—C8—C13−100.2 (3)C20—C21—C22—C23174.4 (3)
C13—C8—C9—C10−1.1 (4)C21—C22—C23—C241.6 (6)
C1—C8—C9—C10178.5 (2)C22—C23—C24—C250.0 (6)
C8—C9—C10—C11−0.5 (5)C23—C24—C25—C26−0.3 (6)
C9—C10—C11—C122.5 (5)C24—C25—C26—C21−0.9 (5)
C10—C11—C12—C13−2.9 (5)C22—C21—C26—C252.3 (5)
C11—C12—C13—C81.4 (5)C20—C21—C26—C25−174.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.902.022.862 (3)156
N2—H2N···O10.902.313.101 (3)146
C14—H14A···O30.972.533.263 (3)132
C19—H19···O10.932.293.050 (4)138

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2224).

References

  • Austria, C., Zhang, J., Valle, H., Zhang, Q., Chew, E., Nguyen, D.-T., Gu, J. Y., Feng, P. & Bu, X. (2007). Inorg. Chem.46, 6283–6290. [PubMed]
  • Ismayilov, R. H., Wang, W.-Z., Lee, G.-H., Wang, R.-R., Liu, I. P.-C., Yeh, C.-Y. & Peng, S.-M. (2007). Dalton Trans. pp. 2898–2907. [PubMed]
  • Manzur, J., Vega, A., Garcia, A. M., Acuña, C., Sieger, M., Sarkar, B., Niemeyer, M., Lissner, F., Schleid, T. & Kaim, W. (2007). Eur. J. Inorg. Chem.35, 5500–5510.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography