PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1460.
Published online 2008 July 12. doi:  10.1107/S1600536808020874
PMCID: PMC2962090

(S)-1-Methoxy­carbonyl-2-(4-nitro­phen­yl)ethanaminium chloride

Abstract

The title compound, C10H13N2O4 +·Cl, comprises a Cl anion and a protonated aminium cation. The crystal packing is stabilized by cation–anion N—H(...)Cl hydrogen bonds and N—H(...)O hydrogen bonds, building an infinite two-dimensional network parallel to the (001) plane. The S absolute configuration at the chiral center was deduced from the synthetic pathway and confirmed by the X-ray analysis.

Related literature

For details of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007 [triangle]); Arki et al. (2004 [triangle]); Hauck et al. (2006 [triangle]); Dai et al. (2008 [triangle]); Azim et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1460-scheme1.jpg

Experimental

Crystal data

  • C10H13N2O4 +·Cl
  • M r = 260.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1460-efi1.jpg
  • a = 4.825 (3) Å
  • b = 8.426 (3) Å
  • c = 15.111 (9) Å
  • β = 95.64 (4)°
  • V = 611.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 298 (2) K
  • 0.25 × 0.18 × 0.17 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.931, T max = 0.942
  • 6215 measured reflections
  • 2751 independent reflections
  • 2077 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.112
  • S = 1.03
  • 2751 reflections
  • 154 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1259 Friedel pairs
  • Flack parameter: −0.03 (9)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020874/dn2364sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020874/dn2364Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

α-Amino acid derivatives are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds (Lucchese et al., (2007); Arki et al., (2004); Hauck et al., (2006); Azim et al., (2006); Dai et al., (2008)). Here we report the crystal structure of the title compound.

The title compound is built up from a Cl- anion and a protonated amino group cation (Fig. 1). The nitro group and the benzene ring are nearly planar, they are only twisted to each other by a torsion angles of C2-C1-N1-O1 (2.1 (7)° ) and C6-C1-N1-O2 (4.4 (7)° ), and the methyl 2-aminopropanoate substituent group is a zig-zag chain.

The crystal packing is stabilized by cation-anion N—H···Cl H-bonds and N—H···O H-bonds building an infinite two-dimensional network developping parallel to the (0 0 1) plane.(Table 1, Fig. 2).

The S absolute configuration at C8 is deduced from the synthetic pathway and confirmed by the X-ray analyses.

Experimental

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 mL), then filtered and washed with distilled water. The nitration amino acid was esterified with H2SO4 and CH3OH at 110 °C for 12 h, the crude product was obtained by evaporated the solution, and then recrystallized with distilled water by adding 1 ml HCl to yield colorless block-like crystals, suitable for X-ray analysis.

Refinement

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine), 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C except methyl) or Uiso(H) = 1.5Ueq(N and methyl C).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
The crystal packing of the title compound viewed along the b axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

Crystal data

C10H13N2O4+·ClF000 = 272
Mr = 260.67Dx = 1.416 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1445 reflections
a = 4.825 (3) Åθ = 2.4–27.5º
b = 8.426 (3) ŵ = 0.32 mm1
c = 15.111 (9) ÅT = 298 (2) K
β = 95.64 (4)ºBlock, colourless
V = 611.4 (6) Å30.25 × 0.18 × 0.17 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer2751 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.4º
T = 298(2) Kθmin = 2.7º
ω scansh = −6→6
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.931, Tmax = 0.942l = −19→19
6215 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048  w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0855P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.30 e Å3
2751 reflectionsΔρmin = −0.17 e Å3
154 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1259 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.98552 (15)0.75535 (11)0.54873 (5)0.0499 (2)
O30.8079 (4)0.7690 (3)0.30131 (12)0.0483 (5)
C90.6109 (5)0.7495 (4)0.35535 (16)0.0362 (6)
O40.4684 (5)0.8525 (3)0.38126 (14)0.0498 (6)
C80.5762 (6)0.5766 (3)0.37686 (18)0.0353 (6)
H8A0.75840.52430.38030.042*
N20.4629 (6)0.5646 (3)0.46458 (15)0.0448 (6)
H11A0.57880.61200.50580.067*
H11B0.44470.46290.47870.067*
H11C0.29730.61190.46170.067*
C40.4967 (6)0.4821 (4)0.21766 (19)0.0400 (7)
C70.3780 (7)0.4943 (4)0.3058 (2)0.0439 (7)
H7A0.33690.38850.32620.053*
H7B0.20440.55300.29800.053*
C10.7171 (8)0.4557 (4)0.0577 (2)0.0493 (8)
C20.8081 (8)0.3560 (5)0.1245 (2)0.0576 (9)
H2C0.94400.28050.11650.069*
C30.6962 (7)0.3682 (4)0.2046 (2)0.0512 (8)
H3A0.75510.29910.25060.061*
C50.4107 (7)0.5812 (4)0.1485 (2)0.0530 (9)
H5A0.27610.65760.15610.064*
C60.5198 (8)0.5697 (5)0.0674 (2)0.0612 (10)
H6A0.46090.63750.02070.073*
N10.8330 (9)0.4439 (5)−0.0288 (2)0.0722 (10)
O11.0166 (8)0.3463 (5)−0.0366 (2)0.1027 (12)
O20.7365 (9)0.5296 (5)−0.0890 (2)0.1057 (12)
C100.8487 (10)0.9318 (4)0.2717 (3)0.0691 (11)
H10A0.99510.93400.23310.104*
H10B0.89840.99830.32240.104*
H10C0.67940.97020.24020.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0520 (4)0.0476 (4)0.0505 (4)0.0037 (4)0.0075 (3)−0.0092 (4)
O30.0588 (12)0.0420 (12)0.0475 (11)−0.0084 (12)0.0217 (10)0.0009 (12)
C90.0410 (14)0.0359 (14)0.0315 (12)−0.0017 (16)0.0027 (11)−0.0029 (15)
O40.0582 (14)0.0403 (12)0.0521 (13)0.0093 (11)0.0123 (11)0.0021 (11)
C80.0429 (16)0.0342 (15)0.0303 (14)0.0008 (13)0.0109 (12)0.0018 (12)
N20.0599 (17)0.0372 (14)0.0390 (14)−0.0001 (13)0.0135 (12)0.0005 (12)
C40.0466 (17)0.0353 (15)0.0389 (16)−0.0111 (13)0.0074 (14)−0.0071 (13)
C70.0428 (17)0.0444 (18)0.0460 (17)−0.0076 (14)0.0114 (14)−0.0031 (15)
C10.058 (2)0.056 (2)0.0364 (17)−0.0125 (17)0.0129 (15)−0.0138 (15)
C20.060 (2)0.062 (2)0.052 (2)0.0040 (19)0.0099 (17)−0.0160 (19)
C30.067 (2)0.0434 (18)0.0431 (18)−0.0007 (17)0.0073 (16)−0.0024 (15)
C50.060 (2)0.053 (2)0.0465 (19)0.0070 (17)0.0083 (16)0.0000 (17)
C60.078 (3)0.064 (2)0.0403 (19)−0.006 (2)0.0023 (18)0.0038 (18)
N10.085 (3)0.089 (3)0.0451 (19)−0.023 (2)0.0180 (17)−0.021 (2)
O10.094 (2)0.141 (3)0.078 (2)0.008 (2)0.0345 (19)−0.035 (2)
O20.155 (3)0.121 (3)0.0465 (16)−0.005 (3)0.0353 (19)0.0011 (19)
C100.090 (3)0.052 (2)0.068 (2)−0.011 (2)0.022 (2)0.013 (2)

Geometric parameters (Å, °)

O3—C91.323 (3)C1—C21.353 (5)
O3—C101.462 (4)C1—C61.371 (5)
C9—O41.196 (4)C1—N11.475 (4)
C9—C81.506 (4)C2—C31.377 (4)
C8—N21.486 (3)C2—H2C0.9300
C8—C71.532 (4)C3—H3A0.9300
C8—H8A0.9800C5—C61.384 (5)
N2—H11A0.8900C5—H5A0.9300
N2—H11B0.8900C6—H6A0.9300
N2—H11C0.8900N1—O21.217 (5)
C4—C51.370 (4)N1—O11.223 (5)
C4—C31.387 (5)C10—H10A0.9600
C4—C71.505 (4)C10—H10B0.9600
C7—H7A0.9700C10—H10C0.9600
C7—H7B0.9700
C9—O3—C10115.6 (3)C2—C1—C6122.2 (3)
O4—C9—O3125.7 (3)C2—C1—N1119.8 (4)
O4—C9—C8123.5 (3)C6—C1—N1118.0 (4)
O3—C9—C8110.8 (3)C1—C2—C3118.9 (3)
N2—C8—C9108.4 (2)C1—C2—H2C120.6
N2—C8—C7109.6 (2)C3—C2—H2C120.6
C9—C8—C7111.2 (2)C2—C3—C4121.0 (3)
N2—C8—H8A109.2C2—C3—H3A119.5
C9—C8—H8A109.2C4—C3—H3A119.5
C7—C8—H8A109.2C4—C5—C6121.4 (3)
C8—N2—H11A109.5C4—C5—H5A119.3
C8—N2—H11B109.5C6—C5—H5A119.3
H11A—N2—H11B109.5C1—C6—C5118.2 (3)
C8—N2—H11C109.5C1—C6—H6A120.9
H11A—N2—H11C109.5C5—C6—H6A120.9
H11B—N2—H11C109.5O2—N1—O1123.7 (4)
C5—C4—C3118.4 (3)O2—N1—C1118.1 (4)
C5—C4—C7121.4 (3)O1—N1—C1118.2 (4)
C3—C4—C7120.2 (3)O3—C10—H10A109.5
C4—C7—C8112.7 (3)O3—C10—H10B109.5
C4—C7—H7A109.1H10A—C10—H10B109.5
C8—C7—H7A109.1O3—C10—H10C109.5
C4—C7—H7B109.1H10A—C10—H10C109.5
C8—C7—H7B109.1H10B—C10—H10C109.5
H7A—C7—H7B107.8
C10—O3—C9—O4−0.3 (4)C1—C2—C3—C4−1.1 (5)
C10—O3—C9—C8176.6 (3)C5—C4—C3—C20.9 (5)
O4—C9—C8—N2−29.2 (4)C7—C4—C3—C2−179.7 (3)
O3—C9—C8—N2153.9 (2)C3—C4—C5—C6−0.4 (5)
O4—C9—C8—C791.4 (3)C7—C4—C5—C6−179.9 (3)
O3—C9—C8—C7−85.5 (3)C2—C1—C6—C5−0.4 (6)
C5—C4—C7—C8−103.2 (4)N1—C1—C6—C5−180.0 (3)
C3—C4—C7—C877.3 (4)C4—C5—C6—C10.2 (5)
N2—C8—C7—C4−172.3 (2)C2—C1—N1—O2176.2 (4)
C9—C8—C7—C467.8 (3)C6—C1—N1—O2−4.2 (5)
C6—C1—C2—C30.8 (6)C2—C1—N1—O1−2.3 (5)
N1—C1—C2—C3−179.6 (3)C6—C1—N1—O1177.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H11B···O4i0.892.312.929 (4)127
N2—H11B···Cl1i0.892.713.380 (3)133
N2—H11C···Cl1ii0.892.423.175 (3)143
N2—H11A···Cl10.892.343.151 (3)151

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2364).

References

  • Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54.
  • Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem.17, 1523–1529. [PubMed]
  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974. [PMC free article] [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem 632, 2305–2309.
  • Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography