PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1446.
Published online 2008 July 9. doi:  10.1107/S1600536808017960
PMCID: PMC2962077

2-Ammonio-3-(4-nitro­phen­yl)propanoate monohydrate

Abstract

The title compound, C9H10N2O4·H2O, exists as a zwitterion with a deprotonated carboxyl group and a protonated amine group. The crystal packing is stabilized by inter­molecular N—H(...)O and O—H(...)O hydrogen bonds, building sheets parallel to the (001) plane.

Related literature

For details on α-amino acids as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007 [triangle]); Arki et al. (2004 [triangle]); Hauck et al. (2006 [triangle]); Azim et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1446-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O4·H2O
  • M r = 228.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1446-efi1.jpg
  • a = 6.2349 (12) Å
  • b = 5.2990 (11) Å
  • c = 15.727 (3) Å
  • β = 101.40 (3)°
  • V = 509.35 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 293 (2) K
  • 0.30 × 0.25 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.964, T max = 0.982
  • 5388 measured reflections
  • 1297 independent reflections
  • 1184 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.140
  • S = 1.14
  • 1297 reflections
  • 153 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017960/rz2221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017960/rz2221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and by the Excellent Doctor Degree Foundation from Southeast University to D-WF.

supplementary crystallographic information

Comment

α-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acids as precursors for the synthesis of novel biologically active compounds (Lucchese et al., 2007; Arki et al., 2004; Hauck et al., 2006; Azim et al., 2006). Here we report the synthesis and crystal structure of the title compound.

The title compound exists as a zwitter ion with a deprotonated carboxyl group and a protonated amino group (Fig. 1). It crystallizes with one water molecule in the asymmetric unit. The crystal packing is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds building sheets parallel to the (001) plane (Table 1, Fig. 2).

Experimental

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 ml), then filtered and washed with distilled water. The crude product was recrystallized with distilled water to yield colorless block-like crystals, suitable for X-ray analysis.

Refinement

All H atoms attached to C atoms and N atom were placed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.93 Å (aromatic) and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). H atoms of water molecule were located in difference Fourier maps and refined freely. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the b axis. All hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C9H10N2O4·H2OF000 = 240
Mr = 228.21Dx = 1.488 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1458 reflections
a = 6.2349 (12) Åθ = 3.3–27.5º
b = 5.2990 (11) ŵ = 0.12 mm1
c = 15.727 (3) ÅT = 293 (2) K
β = 101.40 (3)ºBlock, colourless
V = 509.35 (18) Å30.30 × 0.25 × 0.15 mm
Z = 2

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer1297 independent reflections
Radiation source: fine-focus sealed tube1184 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.3º
ω scansh = −8→8
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −6→6
Tmin = 0.964, Tmax = 0.982l = −20→19
5388 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.0664P)2 + 0.2902P] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1297 reflectionsΔρmax = 0.36 e Å3
153 parametersΔρmin = −0.34 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3398 (5)0.1706 (7)0.0174 (2)0.0512 (9)
N20.2068 (5)−0.9188 (6)0.41031 (19)0.0286 (7)
H2A0.2056−1.04680.37360.043*
H2B0.0991−0.93850.43940.043*
H2D0.3345−0.91540.44750.043*
O3−0.0544 (4)−0.3216 (6)0.34808 (17)0.0342 (6)
C10.3833 (6)−0.1391 (8)0.1227 (2)0.0283 (8)
C70.1506 (6)−0.7322 (7)0.2635 (2)0.0301 (8)
H7A0.2309−0.88470.25600.036*
H7B−0.0026−0.76310.23920.036*
O4−0.1341 (4)−0.6381 (6)0.42852 (18)0.0367 (7)
O20.6547 (5)0.1366 (7)0.1010 (2)0.0537 (9)
C50.4472 (6)−0.4434 (9)0.2352 (2)0.0346 (9)
H5A0.5413−0.52210.28070.042*
C9−0.0204 (5)−0.5355 (7)0.3814 (2)0.0243 (7)
C20.1690 (6)−0.2143 (9)0.0984 (2)0.0335 (9)
H2C0.0766−0.13720.05200.040*
C30.0930 (6)−0.4068 (9)0.1441 (2)0.0330 (8)
H3A−0.0516−0.46000.12820.040*
N10.4628 (5)0.0705 (7)0.0771 (2)0.0351 (8)
C80.1756 (5)−0.6791 (7)0.3613 (2)0.0231 (7)
H8A0.3065−0.57510.37980.028*
C60.5246 (6)−0.2510 (9)0.1903 (2)0.0334 (9)
H6A0.6694−0.19820.20550.040*
C40.2310 (6)−0.5208 (8)0.2133 (2)0.0281 (7)
O50.6393 (5)−1.0768 (7)0.4286 (2)0.0412 (7)
H300.715 (8)−0.930 (12)0.427 (3)0.047 (14)*
H310.681 (11)−1.158 (18)0.393 (4)0.08 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0582 (19)0.050 (2)0.0455 (16)0.0021 (17)0.0115 (14)0.0193 (17)
N20.0280 (14)0.0290 (16)0.0305 (14)0.0084 (13)0.0095 (11)0.0063 (14)
O30.0334 (13)0.0275 (14)0.0409 (14)0.0068 (12)0.0057 (11)0.0025 (13)
C10.0351 (17)0.0278 (19)0.0241 (15)−0.0002 (15)0.0111 (13)−0.0019 (15)
C70.0401 (19)0.0273 (19)0.0246 (16)−0.0030 (16)0.0109 (14)−0.0022 (15)
O40.0374 (14)0.0334 (15)0.0452 (14)0.0024 (13)0.0223 (12)−0.0027 (13)
O20.0545 (19)0.051 (2)0.0563 (18)−0.0224 (17)0.0128 (15)0.0021 (17)
C50.0274 (17)0.044 (2)0.0313 (17)0.0054 (18)0.0037 (14)0.0094 (18)
C90.0244 (15)0.0246 (17)0.0231 (14)0.0003 (14)0.0031 (12)−0.0061 (14)
C20.0333 (18)0.041 (2)0.0249 (16)0.0008 (17)0.0024 (14)0.0034 (17)
C30.0320 (17)0.040 (2)0.0263 (16)−0.0036 (18)0.0037 (14)−0.0015 (17)
N10.0443 (18)0.0350 (18)0.0289 (15)−0.0024 (17)0.0143 (14)−0.0004 (14)
C80.0263 (15)0.0180 (16)0.0255 (15)0.0014 (13)0.0064 (12)0.0012 (13)
C60.0229 (16)0.045 (2)0.0330 (17)−0.0026 (16)0.0071 (13)0.0041 (18)
C40.0327 (17)0.0298 (18)0.0238 (15)0.0028 (16)0.0103 (13)−0.0024 (16)
O50.0308 (14)0.0402 (19)0.0557 (18)0.0035 (14)0.0160 (13)−0.0028 (15)

Geometric parameters (Å, °)

O1—N11.211 (4)O2—N11.232 (4)
N2—C81.478 (5)C5—C41.385 (5)
N2—H2A0.8900C5—C61.381 (6)
N2—H2B0.8900C5—H5A0.9300
N2—H2D0.8900C9—C81.524 (5)
O3—C91.249 (5)C2—C31.384 (6)
C1—C61.374 (5)C2—H2C0.9300
C1—C21.374 (5)C3—C41.387 (5)
C1—N11.461 (5)C3—H3A0.9300
C7—C41.512 (5)C8—H8A0.9800
C7—C81.541 (4)C6—H6A0.9300
C7—H7A0.9700O5—H300.92 (6)
C7—H7B0.9700O5—H310.79 (8)
O4—C91.247 (4)
C8—N2—H2A109.5C1—C2—H2C120.5
C8—N2—H2B109.5C3—C2—H2C120.5
H2A—N2—H2B109.5C2—C3—C4120.4 (3)
C8—N2—H2D109.5C2—C3—H3A119.8
H2A—N2—H2D109.5C4—C3—H3A119.8
H2B—N2—H2D109.5O1—N1—O2122.7 (4)
C6—C1—C2122.0 (4)O1—N1—C1119.3 (3)
C6—C1—N1118.7 (3)O2—N1—C1118.0 (3)
C2—C1—N1119.3 (3)N2—C8—C9110.4 (3)
C4—C7—C8114.0 (3)N2—C8—C7109.9 (3)
C4—C7—H7A108.7C9—C8—C7111.7 (3)
C8—C7—H7A108.7N2—C8—H8A108.2
C4—C7—H7B108.7C9—C8—H8A108.2
C8—C7—H7B108.7C7—C8—H8A108.2
H7A—C7—H7B107.6C1—C6—C5118.6 (3)
C4—C5—C6120.9 (3)C1—C6—H6A120.7
C4—C5—H5A119.6C5—C6—H6A120.7
C6—C5—H5A119.6C5—C4—C3119.2 (4)
O4—C9—O3125.1 (3)C5—C4—C7119.8 (3)
O4—C9—C8118.6 (3)C3—C4—C7121.0 (3)
O3—C9—C8116.3 (3)H30—O5—H31101 (6)
C1—C2—C3118.9 (3)
C6—C1—C2—C30.7 (6)C4—C7—C8—N2−150.5 (3)
N1—C1—C2—C3−177.6 (3)C4—C7—C8—C986.6 (4)
C1—C2—C3—C40.2 (6)C2—C1—C6—C5−0.5 (6)
C6—C1—N1—O1180.0 (4)N1—C1—C6—C5177.8 (4)
C2—C1—N1—O1−1.7 (5)C4—C5—C6—C1−0.7 (6)
C6—C1—N1—O20.6 (5)C6—C5—C4—C31.6 (6)
C2—C1—N1—O2178.9 (4)C6—C5—C4—C7179.9 (4)
O4—C9—C8—N2−4.9 (4)C2—C3—C4—C5−1.3 (6)
O3—C9—C8—N2175.4 (3)C2—C3—C4—C7−179.6 (3)
O4—C9—C8—C7117.7 (4)C8—C7—C4—C559.3 (5)
O3—C9—C8—C7−61.9 (4)C8—C7—C4—C3−122.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.892.162.745 (4)123
N2—H2B···O4ii0.892.302.904 (4)125
O5—H30···O4iii0.92 (6)1.81 (6)2.721 (5)177 (5)
O5—H31···O3iv0.79 (8)2.11 (8)2.809 (4)148 (6)

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+1; (iii) x+1, y, z; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2221).

References

  • Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54.
  • Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem.17, 1523–1529. [PubMed]
  • Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem 632, 2305–2309.
  • Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography