PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1441.
Published online 2008 July 9. doi:  10.1107/S1600536808019685
PMCID: PMC2962072

N′-(2,4-Dinitro­phen­yl)acetohydrazide

Abstract

In the title compound, C8H8N4O5, the nitro groups ortho and para to the hydrazone group are twisted by 10.0 (2) and 3.6 (2)°, respectively, relative to the aromatic ring. The structure exhibits an intra­molecular N—H(...)O hydrogen bond between the hydrazide and ortho-nitro groups. There is a strong inter­molecular C=O(...)H—N hydrogen bond, giving rise to chains, and weaker ONO(...)NO2 [2.944 (2) Å] and C—H(...)O—N inter­actions linking the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Domiano et al. (1984 [triangle]); Guo (2007 [triangle]); Li et al. (1988 [triangle]); Rudnicka & Osmialowska (1979 [triangle]); Sakamoto et al. (1993 [triangle]); Siddiqui et al. (2007 [triangle]); Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1441-scheme1.jpg

Experimental

Crystal data

  • C8H8N4O5
  • M r = 240.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1441-efi1.jpg
  • a = 4.8585 (4) Å
  • b = 10.7703 (8) Å
  • c = 19.1059 (14) Å
  • V = 999.76 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 150 (2) K
  • 0.57 × 0.09 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.927, T max = 0.992
  • 11843 measured reflections
  • 1794 independent reflections
  • 1616 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.078
  • S = 1.03
  • 1794 reflections
  • 161 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019685/bt2733sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019685/bt2733Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are greatful to the Pakistan Council of Scientific & Industrial Research Laboratories Complex, Lahore, for providing the necessary facilities.

supplementary crystallographic information

Comment

The chemistry of hydrazones has been intensely investigated in recent years due to their excellent coordinating capability (Domiano et al., 1984) and pharmacological activities (Li et al., 1988). These compounds are also being used as precursors for the efficient synthesis of various condensed heterocycles in organic chemistry (Rudnicka & Osmialowska, 1979) and as highly selective metal scavengers (Sakamoto et al., 1993) in analytical chemistry. In continuation of our ongoing work on the synthesis of various heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006; Siddiqui et al., 2007), the title compound, (I), was synthesized by reacting 2,4-dinitrophenylhydrazine with acetic anhydride.

Most of the bond lengths and angles in (I) are similar to those in related molecules (Guo, 2007). The nitro groups ortho and para to the hydrazone group are twisted out of this plane by 10.0 (2) and 3.6 (2)°, respectively. The larger twist of the ortho-nitro group arises due to the desire to form an intramolecular hydrogen bond which results in a six-membered ring (Fig. 1 and Table 1). Each molecule also forms an intermolecular N—H···O═C hydrogen bond giving rise to stacks of molecules parallel to a (Fig. 2). The hydrogen-bonded chains of (I) are further linked together into a three-dimensional network (Fig. 3) via weaker C—H···O—N interactions involving the nitro groups and methyl and aryl H atoms (range 2.4–2.6Å) along with some weak ONO···NO2 interactions [O1···N1i = 2.944 (2)Å; symmetry code: (i) -0.5+x, 1.5-y, 2-z].

Experimental

A mixture of 2,4-dinitrophenylhydrazine (1.981 g; 10.0 mmoles) and acetic anhydride (5.0 ml) was stirred for a period of six hours at room temperature. Then, this mixture was poured into ice cooled water and neutralized with 10% sodium bicarbonate solution. The precipitated solids were collected by filtration, washed and dried. Crystals suitable for X-ray crystallography were grown by slow evaporation of solution of the title compound in a mixture of ethanol and water (90:10); m.p. 471 K; yield: 82%.

Refinement

1255 Friedel pairs were merged. H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å for aryl-H; 0.98 Å for methyl-H) using a riding model. H atoms on N had coordinates freely refined. Uiso values were set to 1.2Ueq of the carrier atom (1.5Ueq for methyl-H).

Figures

Fig. 1.
The asymmetric unit of the title compound showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of molecules linked via intermolecular N—H···O=C hydrogen bonds parallel to a.
Fig. 3.
Perspective view of the three-dimensional crystal packing showing hydrogen-bonds and other intermolecular interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C8H8N4O5F000 = 496
Mr = 240.18Dx = 1.596 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3491 reflections
a = 4.8585 (4) Åθ = 2.9–27.8º
b = 10.7703 (8) ŵ = 0.14 mm1
c = 19.1059 (14) ÅT = 150 (2) K
V = 999.76 (13) Å3Lath, orange
Z = 40.57 × 0.09 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer1794 independent reflections
Radiation source: fine-focus sealed tube1616 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 150(2) Kθmax = 30.6º
ω rotation with narrow frames scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)h = −6→6
Tmin = 0.927, Tmax = 0.992k = −15→15
11843 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: all non-H atoms found by direct methods
Least-squares matrix: fullHydrogen site location: geom except NH coords freely refined
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078  w = 1/[σ2(Fo2) + (0.0462P)2 + 0.078P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1794 reflectionsΔρmax = 0.27 e Å3
161 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 1255 Friedel pairs. Friedels merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3396 (3)0.64098 (13)0.89834 (7)0.0206 (3)
N10.1186 (2)0.67553 (11)0.94555 (6)0.0239 (2)
O10.0352 (2)0.78314 (10)0.94499 (6)0.0298 (2)
O20.0219 (2)0.59512 (11)0.98457 (6)0.0349 (3)
C20.4679 (3)0.73783 (13)0.86286 (7)0.0234 (3)
H20.41530.82150.87100.028*
C30.6722 (3)0.70968 (14)0.81593 (7)0.0245 (3)
N20.8161 (3)0.81093 (13)0.78132 (7)0.0323 (3)
O30.7483 (3)0.91873 (12)0.79517 (7)0.0428 (3)
O41.0012 (3)0.78354 (13)0.73998 (7)0.0462 (3)
C40.7508 (3)0.58725 (15)0.80240 (7)0.0253 (3)
H4A0.89030.57000.76890.030*
C50.6255 (3)0.49242 (13)0.83774 (7)0.0231 (3)
H50.67910.40930.82830.028*
C60.4174 (3)0.51517 (13)0.88817 (7)0.0200 (3)
N30.3089 (3)0.42103 (11)0.92557 (7)0.0243 (3)
H30.172 (4)0.4329 (16)0.9508 (10)0.029*
N40.3548 (3)0.29805 (11)0.90659 (7)0.0222 (2)
H40.518 (4)0.2710 (16)0.9126 (10)0.027*
C70.1401 (3)0.21961 (13)0.91490 (7)0.0222 (3)
O5−0.0894 (2)0.25786 (10)0.93114 (6)0.0291 (2)
C80.2055 (4)0.08501 (14)0.90370 (9)0.0310 (3)
H8A0.17470.03920.94730.047*
H8B0.39840.07640.88950.047*
H8C0.08610.05150.86690.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0161 (6)0.0247 (6)0.0211 (6)−0.0007 (5)−0.0003 (5)−0.0036 (5)
N10.0187 (5)0.0254 (5)0.0276 (6)−0.0018 (5)0.0007 (5)−0.0083 (5)
O10.0243 (5)0.0272 (5)0.0380 (6)0.0046 (4)−0.0021 (5)−0.0092 (4)
O20.0334 (6)0.0304 (6)0.0408 (6)−0.0044 (5)0.0178 (5)−0.0053 (5)
C20.0218 (6)0.0241 (6)0.0242 (6)−0.0029 (5)−0.0050 (5)0.0001 (5)
C30.0229 (6)0.0303 (7)0.0203 (6)−0.0070 (6)−0.0027 (5)0.0046 (5)
N20.0323 (7)0.0384 (7)0.0262 (6)−0.0125 (6)−0.0069 (6)0.0095 (5)
O30.0475 (8)0.0320 (6)0.0489 (7)−0.0124 (6)−0.0052 (6)0.0114 (5)
O40.0430 (7)0.0581 (8)0.0374 (6)−0.0177 (7)0.0111 (6)0.0105 (6)
C40.0203 (7)0.0352 (7)0.0203 (6)−0.0025 (6)0.0020 (5)0.0001 (6)
C50.0205 (6)0.0267 (6)0.0221 (6)0.0012 (5)0.0029 (5)−0.0024 (5)
C60.0161 (6)0.0238 (6)0.0200 (6)−0.0007 (5)−0.0006 (5)−0.0014 (5)
N30.0210 (6)0.0217 (5)0.0301 (6)0.0006 (5)0.0084 (5)−0.0019 (5)
N40.0154 (5)0.0200 (5)0.0312 (6)0.0011 (4)0.0006 (5)−0.0004 (5)
C70.0182 (6)0.0256 (6)0.0228 (6)−0.0011 (5)−0.0022 (5)0.0029 (5)
O50.0159 (5)0.0339 (6)0.0375 (6)−0.0002 (4)0.0012 (4)0.0046 (5)
C80.0308 (8)0.0235 (6)0.0389 (8)−0.0011 (6)−0.0008 (7)0.0019 (6)

Geometric parameters (Å, °)

C1—C21.3915 (19)C5—C61.4178 (18)
C1—C61.4202 (19)C5—H50.9500
C1—N11.4508 (18)C6—N31.3477 (18)
N1—O11.2278 (16)N3—N41.3913 (17)
N1—O21.2354 (16)N3—H30.83 (2)
C2—C31.371 (2)N4—C71.3519 (18)
C2—H20.9500N4—H40.85 (2)
C3—C41.397 (2)C7—O51.2282 (17)
C3—N21.4543 (19)C7—C81.500 (2)
N2—O41.233 (2)C8—H8A0.9800
N2—O31.2355 (19)C8—H8B0.9800
C4—C51.367 (2)C8—H8C0.9800
C4—H4A0.9500
C2—C1—C6121.96 (13)C6—C5—H5119.2
C2—C1—N1116.25 (12)N3—C6—C5120.61 (13)
C6—C1—N1121.79 (12)N3—C6—C1122.76 (12)
O1—N1—O2122.79 (12)C5—C6—C1116.59 (12)
O1—N1—C1118.74 (12)C6—N3—N4121.01 (12)
O2—N1—C1118.47 (12)C6—N3—H3120.3 (12)
C3—C2—C1118.50 (13)N4—N3—H3115.2 (12)
C3—C2—H2120.8C7—N4—N3116.14 (12)
C1—C2—H2120.8C7—N4—H4119.2 (12)
C2—C3—C4121.83 (13)N3—N4—H4116.0 (13)
C2—C3—N2118.65 (14)O5—C7—N4121.37 (13)
C4—C3—N2119.49 (13)O5—C7—C8123.55 (14)
O4—N2—O3123.81 (14)N4—C7—C8115.07 (13)
O4—N2—C3117.56 (14)C7—C8—H8A109.5
O3—N2—C3118.63 (15)C7—C8—H8B109.5
C5—C4—C3119.47 (13)H8A—C8—H8B109.5
C5—C4—H4A120.3C7—C8—H8C109.5
C3—C4—H4A120.3H8A—C8—H8C109.5
C4—C5—C6121.60 (13)H8B—C8—H8C109.5
C4—C5—H5119.2
C2—C1—N1—O19.02 (18)N2—C3—C4—C5176.53 (13)
C6—C1—N1—O1−170.04 (13)C3—C4—C5—C6−0.2 (2)
C2—C1—N1—O2−171.10 (12)C4—C5—C6—N3−175.76 (14)
C6—C1—N1—O29.84 (19)C4—C5—C6—C12.1 (2)
C6—C1—C2—C31.1 (2)C2—C1—C6—N3175.25 (13)
N1—C1—C2—C3−177.94 (12)N1—C1—C6—N3−5.7 (2)
C1—C2—C3—C40.9 (2)C2—C1—C6—C5−2.53 (19)
C1—C2—C3—N2−177.00 (13)N1—C1—C6—C5176.47 (12)
C2—C3—N2—O4179.13 (13)C5—C6—N3—N4−13.1 (2)
C4—C3—N2—O41.2 (2)C1—C6—N3—N4169.18 (13)
C2—C3—N2—O3−0.3 (2)C6—N3—N4—C7−142.12 (14)
C4—C3—N2—O3−178.27 (14)N3—N4—C7—O57.5 (2)
C2—C3—C4—C5−1.3 (2)N3—N4—C7—C8−171.84 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O20.83 (2)2.001 (18)2.5942 (16)127.9 (16)
N4—H4···O5i0.85 (2)1.95 (2)2.7748 (16)164.0 (17)
C5—H5···O4ii0.952.443.249 (2)143
C8—H8A···O2iii0.982.583.269 (2)128
C8—H8C···O3iv0.982.573.527 (2)165

Symmetry codes: (i) x+1, y, z; (ii) −x+2, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, −z+2; (iv) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2733).

References

  • Bruker (2006). APEX2 andSAINT Bruker AXS Inc.,Madison, Wisconsin, USA.
  • Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.
  • Guo, H.-M. (2007). Acta Cryst. E63, o3123.
  • Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem.18, 657–665.
  • Rudnicka, G. & Osmialowska, Z. (1979). Acta Pol. Pharm.36, 411–419.
  • Sakamoto, H., Goto, H., Yokoshima, M., Dobashi, M., Ishikawa, J., Doi, K. & Otomo, M. (1993). Bull. Chem. Soc. Jpn, 66, 2907–2914.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull 55, 1014–1017. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography