PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1440.
Published online 2008 July 9. doi:  10.1107/S1600536808020631
PMCID: PMC2962071

(E)-3-(3,4-Dimethoxy­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

Abstract

The title compound, C15H14O3S, has two symmetry-independent mol­ecules in the asymmetric unit with almost identical geometry. The dihedral angle between the benzene and thio­phene rings is 1.61 (11)° in one mol­ecule and 7.21 (11)° in the other. In both mol­ecules, C—H(...)O hydrogen bonds generate rings of graph-set motif S(5). The crystal structure is stabilized by C—H(...)O hydrogen bonds, C—H(...)π inter­actions and π–π inter­actions involving the benzene and thio­phene rings, with centroid–centroid distances of 3.5249 (13) and 3.6057 (13) Å.

Related literature

For related literature on the biological and non-linear optical properties of chalcone derivatives, see: Agrinskaya et al. (1999 [triangle]); Chopra et al. (2007 [triangle]); Patil et al. (2006 [triangle]); Patil, Ng et al. (2007 [triangle]); Patil, Fun et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1440-scheme1.jpg

Experimental

Crystal data

  • C15H14O3S
  • M r = 274.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1440-efi1.jpg
  • a = 12.1509 (3) Å
  • b = 14.3118 (3) Å
  • c = 16.3692 (4) Å
  • β = 106.570 (2)°
  • V = 2728.41 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100.0 (1) K
  • 0.60 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.871, T max = 0.974
  • 31879 measured reflections
  • 7997 independent reflections
  • 4723 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.158
  • S = 1.07
  • 7997 reflections
  • 347 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020631/ci2626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020631/ci2626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The synthesis and structural studies of chalcone derivatives have been of immense interest because of their biological as well as their increasingly important nonlinear optical properties (Agrinskaya et al., 1999; Chopra et al. 2007). We have previously reported the crystal structures of D–π–A type chalcone derivatives (Patil et al.. 2006; Patil, Ng et al., 2007; Patil, Fun et al., 2007). In continuation of our interest in these compounds, we report herein the crystal structure of the title compound, (I).

There are two independent molecules (A and B) in the asymmetric unit of (I), with similar geometries (Fig. 1). The bond lengths and angles are found to have normal values (Allen et al., 1987). The thiophene rings in both the molecules are planar, with a maximum deviation of 0.002 (3) Å for atom C2A and -0.007 (3) Å for atom C3B. The dihedral angle between the benzene and thiophene rings is 1.61 (11)° in molecule A and 7.21 (11)° in molecule B. In each of the independent molecule, an intramolecular C—H···O hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995).

The crystal structure is consolidated by weak C—H···O and C—H···π interactions (Table 1). The packing is further strengthened by π–π interactions between the S1A/C1A–C4A (centroid Cg1) and C8A–C13A (centroid Cg2) rings [Cg1···Cg2i = 3.5249 (13) Å] and between the S1B/C1B–C4B (centroid Cg3) and C8B–C13B (centroid Cg4) rings [Cg3···Cg4ii = 3.6057 (13) Å] [symmetry codes: (i) -x, 1-y, -z; (ii) -x, 1-y, -z].

Experimental

The title compound was synthesized by the condensation of 3,4-dimethoxybenzaldehyde (0.01 mol, 1.66 g) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 6 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The compound was recrystallized from acetone.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H14O3SF000 = 1152
Mr = 274.32Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3182 reflections
a = 12.1509 (3) Åθ = 2.3–22.9º
b = 14.3118 (3) ŵ = 0.24 mm1
c = 16.3692 (4) ÅT = 100.0 (1) K
β = 106.570 (2)ºNeedle, white
V = 2728.41 (11) Å30.60 × 0.17 × 0.11 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7997 independent reflections
Radiation source: fine-focus sealed tube4723 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.074
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −16→17
Tmin = 0.871, Tmax = 0.974k = −20→20
31879 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.158  w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0849P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7997 reflectionsΔρmax = 0.46 e Å3
347 parametersΔρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1A0.30263 (5)0.34458 (4)0.21155 (4)0.03061 (17)
O1A0.29234 (14)0.52178 (12)0.12000 (11)0.0341 (4)
O2A−0.29137 (13)0.76488 (11)−0.01772 (10)0.0271 (4)
O3A−0.23198 (13)0.90679 (11)−0.08963 (10)0.0263 (4)
C1A0.2263 (2)0.26572 (18)0.24872 (16)0.0347 (6)
H1AA0.25820.21240.27870.042*
C2A0.1135 (2)0.28805 (18)0.23049 (18)0.0381 (6)
H2AA0.06020.25160.24700.046*
C3A0.08511 (19)0.37196 (15)0.18408 (14)0.0241 (5)
H3AA0.01170.39750.16600.029*
C4A0.18303 (19)0.41151 (16)0.16895 (14)0.0254 (5)
C5A0.1974 (2)0.49958 (16)0.12684 (14)0.0261 (5)
C6A0.09567 (19)0.56023 (16)0.09447 (14)0.0276 (5)
H6AA0.02440.54110.09870.033*
C7A0.1065 (2)0.64255 (17)0.05911 (15)0.0294 (5)
H7AA0.18000.65720.05650.035*
C8A0.01813 (19)0.71264 (17)0.02396 (14)0.0273 (5)
C9A0.0492 (2)0.79240 (17)−0.01259 (15)0.0302 (5)
H9AA0.12550.8011−0.01140.036*
C10A−0.03157 (19)0.85911 (17)−0.05077 (14)0.0279 (5)
H10A−0.00960.9119−0.07530.034*
C11A−0.14488 (19)0.84704 (16)−0.05229 (13)0.0241 (5)
C12A−0.17800 (18)0.76786 (16)−0.01398 (14)0.0228 (5)
C13A−0.09658 (19)0.70150 (16)0.02383 (14)0.0248 (5)
H13A−0.11810.64920.04930.030*
C14A−0.3308 (2)0.67985 (16)0.01146 (17)0.0321 (6)
H14A−0.41240.68300.00200.048*
H14B−0.29370.67200.07120.048*
H14C−0.31270.6278−0.01940.048*
C15A−0.2024 (2)0.98748 (17)−0.13146 (16)0.0323 (6)
H15A−0.26981.0247−0.15470.048*
H15B−0.17190.9677−0.17660.048*
H15C−0.14591.0238−0.09100.048*
S1B0.37037 (5)0.38880 (4)0.72047 (4)0.03122 (17)
O1B0.16770 (14)0.30240 (11)0.59734 (11)0.0326 (4)
O2B−0.10219 (14)0.60874 (11)0.21110 (10)0.0298 (4)
O3B−0.24951 (13)0.49172 (11)0.12281 (10)0.0307 (4)
C1B0.45590 (19)0.48496 (18)0.73969 (15)0.0318 (6)
H1BA0.51990.49130.78680.038*
C2B0.42056 (19)0.55139 (17)0.67877 (15)0.0293 (5)
H2BA0.45780.60820.67910.035*
C3B0.32112 (18)0.52442 (15)0.61500 (14)0.0236 (5)
H3BA0.28470.56210.56900.028*
C4B0.28323 (18)0.43643 (15)0.62777 (14)0.0230 (5)
C5B0.18737 (18)0.38180 (16)0.57549 (14)0.0240 (5)
C6B0.11733 (18)0.42482 (16)0.49650 (14)0.0240 (5)
H6BA0.13160.48630.48420.029*
C7B0.03331 (19)0.37724 (16)0.44176 (15)0.0262 (5)
H7BA0.02140.31650.45770.031*
C8B−0.04199 (18)0.40867 (16)0.36023 (14)0.0236 (5)
C9B−0.12424 (19)0.34745 (16)0.31244 (14)0.0254 (5)
H9BA−0.13150.28840.33400.030*
C10B−0.19590 (19)0.37269 (16)0.23295 (14)0.0249 (5)
H10B−0.25020.33070.20180.030*
C11B−0.18609 (18)0.45996 (16)0.20059 (14)0.0237 (5)
C12B−0.10419 (18)0.52376 (15)0.24885 (14)0.0218 (5)
C13B−0.03375 (18)0.49828 (16)0.32695 (14)0.0231 (5)
H13B0.02000.54060.35830.028*
C14B−0.0190 (2)0.67467 (17)0.25647 (16)0.0336 (6)
H14D−0.02300.73000.22260.050*
H14E0.05630.64780.26830.050*
H14F−0.03450.69060.30910.050*
C15B−0.3363 (2)0.43030 (18)0.07416 (16)0.0374 (6)
H15D−0.37300.45830.01990.056*
H15E−0.39230.41930.10430.056*
H15F−0.30200.37200.06560.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.0259 (3)0.0293 (3)0.0321 (3)0.0024 (2)0.0008 (2)−0.0001 (3)
O1A0.0258 (9)0.0367 (10)0.0373 (10)0.0039 (7)0.0047 (7)0.0070 (8)
O2A0.0241 (8)0.0226 (9)0.0342 (9)0.0016 (7)0.0076 (7)0.0018 (7)
O3A0.0254 (8)0.0255 (9)0.0270 (9)0.0027 (7)0.0060 (7)0.0050 (7)
C1A0.0423 (15)0.0250 (13)0.0364 (15)0.0033 (11)0.0104 (12)−0.0002 (11)
C2A0.0387 (15)0.0299 (15)0.0513 (17)−0.0063 (11)0.0219 (13)−0.0096 (13)
C3A0.0225 (11)0.0194 (12)0.0285 (12)0.0018 (9)0.0041 (9)−0.0080 (10)
C4A0.0240 (11)0.0258 (13)0.0236 (12)0.0038 (9)0.0021 (9)−0.0081 (10)
C5A0.0283 (12)0.0251 (13)0.0205 (11)0.0043 (10)0.0001 (9)−0.0052 (10)
C6A0.0247 (11)0.0285 (14)0.0261 (12)0.0042 (10)0.0015 (9)−0.0030 (10)
C7A0.0256 (12)0.0331 (14)0.0261 (13)0.0038 (10)0.0017 (10)−0.0016 (11)
C8A0.0245 (11)0.0309 (14)0.0214 (12)0.0037 (10)−0.0015 (9)−0.0015 (10)
C9A0.0237 (12)0.0369 (15)0.0271 (13)0.0002 (10)0.0027 (10)0.0032 (11)
C10A0.0276 (12)0.0289 (13)0.0251 (12)−0.0016 (10)0.0040 (10)0.0036 (10)
C11A0.0262 (11)0.0273 (13)0.0157 (11)0.0042 (10)0.0009 (9)−0.0006 (9)
C12A0.0229 (11)0.0249 (12)0.0203 (11)0.0015 (9)0.0054 (9)−0.0034 (9)
C13A0.0300 (12)0.0215 (12)0.0220 (12)0.0008 (9)0.0059 (9)−0.0002 (9)
C14A0.0343 (13)0.0246 (13)0.0423 (15)−0.0019 (10)0.0185 (12)0.0014 (11)
C15A0.0313 (13)0.0298 (14)0.0351 (14)0.0028 (10)0.0082 (11)0.0120 (11)
S1B0.0260 (3)0.0321 (4)0.0313 (3)0.0046 (2)0.0013 (2)0.0055 (3)
O1B0.0321 (9)0.0229 (9)0.0387 (10)−0.0015 (7)0.0036 (8)0.0055 (8)
O2B0.0342 (9)0.0224 (9)0.0284 (9)−0.0067 (7)0.0017 (7)0.0020 (7)
O3B0.0332 (9)0.0256 (9)0.0260 (9)−0.0052 (7)−0.0034 (7)0.0010 (7)
C1B0.0221 (11)0.0390 (15)0.0312 (13)0.0035 (10)0.0027 (10)−0.0071 (12)
C2B0.0239 (11)0.0277 (13)0.0344 (13)−0.0022 (10)0.0054 (10)−0.0032 (11)
C3B0.0219 (11)0.0222 (12)0.0243 (12)0.0016 (9)0.0027 (9)0.0017 (10)
C4B0.0227 (11)0.0224 (12)0.0233 (12)0.0032 (9)0.0058 (9)−0.0011 (9)
C5B0.0236 (11)0.0230 (12)0.0263 (12)0.0019 (9)0.0083 (9)−0.0018 (10)
C6B0.0253 (11)0.0200 (12)0.0253 (12)−0.0010 (9)0.0048 (9)0.0014 (9)
C7B0.0263 (12)0.0198 (12)0.0315 (13)0.0013 (9)0.0068 (10)0.0034 (10)
C8B0.0225 (11)0.0257 (13)0.0220 (11)−0.0024 (9)0.0053 (9)−0.0029 (9)
C9B0.0262 (11)0.0233 (12)0.0251 (12)−0.0024 (9)0.0048 (9)0.0001 (10)
C10B0.0240 (11)0.0211 (12)0.0274 (12)−0.0037 (9)0.0036 (9)−0.0055 (10)
C11B0.0229 (11)0.0239 (12)0.0218 (11)0.0003 (9)0.0025 (9)−0.0007 (10)
C12B0.0247 (11)0.0164 (11)0.0255 (12)−0.0007 (9)0.0091 (9)0.0014 (9)
C13B0.0229 (11)0.0214 (12)0.0240 (12)−0.0037 (9)0.0052 (9)−0.0041 (9)
C14B0.0400 (14)0.0223 (13)0.0343 (14)−0.0124 (11)0.0041 (11)−0.0027 (11)
C15B0.0413 (15)0.0332 (15)0.0284 (14)−0.0105 (12)−0.0051 (11)0.0002 (11)

Geometric parameters (Å, °)

S1A—C1A1.681 (3)S1B—C1B1.699 (3)
S1A—C4A1.714 (2)S1B—C4B1.724 (2)
O1A—C5A1.232 (3)O1B—C5B1.235 (3)
O2A—C12A1.362 (2)O2B—C12B1.368 (3)
O2A—C14A1.439 (3)O2B—C14B1.426 (3)
O3A—C11A1.362 (3)O3B—C11B1.364 (3)
O3A—C15A1.439 (3)O3B—C15B1.429 (3)
C1A—C2A1.355 (3)C1B—C2B1.356 (3)
C1A—H1AA0.93C1B—H1BA0.93
C2A—C3A1.410 (3)C2B—C3B1.407 (3)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.402 (3)C3B—C4B1.377 (3)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.471 (3)C4B—C5B1.460 (3)
C5A—C6A1.479 (3)C5B—C6B1.466 (3)
C6A—C7A1.336 (3)C6B—C7B1.337 (3)
C6A—H6AA0.93C6B—H6BA0.93
C7A—C8A1.462 (3)C7B—C8B1.457 (3)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.390 (3)C8B—C9B1.390 (3)
C8A—C13A1.402 (3)C8B—C13B1.408 (3)
C9A—C10A1.384 (3)C9B—C10B1.391 (3)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.381 (3)C10B—C11B1.375 (3)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.408 (3)C11B—C12B1.414 (3)
C12A—C13A1.384 (3)C12B—C13B1.370 (3)
C13A—H13A0.93C13B—H13B0.93
C14A—H14A0.96C14B—H14D0.96
C14A—H14B0.96C14B—H14E0.96
C14A—H14C0.96C14B—H14F0.96
C15A—H15A0.96C15B—H15D0.96
C15A—H15B0.96C15B—H15E0.96
C15A—H15C0.96C15B—H15F0.96
C1A—S1A—C4A91.80 (12)C1B—S1B—C4B91.86 (12)
C12A—O2A—C14A116.11 (17)C12B—O2B—C14B117.02 (18)
C11A—O3A—C15A116.73 (17)C11B—O3B—C15B116.49 (18)
C2A—C1A—S1A112.9 (2)C2B—C1B—S1B112.52 (18)
C2A—C1A—H1AA123.5C2B—C1B—H1BA123.7
S1A—C1A—H1AA123.5S1B—C1B—H1BA123.7
C1A—C2A—C3A113.4 (2)C1B—C2B—C3B112.2 (2)
C1A—C2A—H2AA123.3C1B—C2B—H2BA123.9
C3A—C2A—H2AA123.3C3B—C2B—H2BA123.9
C4A—C3A—C2A110.4 (2)C4B—C3B—C2B113.1 (2)
C4A—C3A—H3AA124.8C4B—C3B—H3BA123.5
C2A—C3A—H3AA124.8C2B—C3B—H3BA123.5
C3A—C4A—C5A130.5 (2)C3B—C4B—C5B130.2 (2)
C3A—C4A—S1A111.49 (18)C3B—C4B—S1B110.32 (17)
C5A—C4A—S1A118.01 (16)C5B—C4B—S1B119.42 (17)
O1A—C5A—C4A120.2 (2)O1B—C5B—C4B120.7 (2)
O1A—C5A—C6A121.6 (2)O1B—C5B—C6B122.0 (2)
C4A—C5A—C6A118.2 (2)C4B—C5B—C6B117.2 (2)
C7A—C6A—C5A119.8 (2)C7B—C6B—C5B121.2 (2)
C7A—C6A—H6AA120.1C7B—C6B—H6BA119.4
C5A—C6A—H6AA120.1C5B—C6B—H6BA119.4
C6A—C7A—C8A128.6 (2)C6B—C7B—C8B128.1 (2)
C6A—C7A—H7AA115.7C6B—C7B—H7BA116.0
C8A—C7A—H7AA115.7C8B—C7B—H7BA116.0
C9A—C8A—C13A119.0 (2)C9B—C8B—C13B118.4 (2)
C9A—C8A—C7A118.3 (2)C9B—C8B—C7B118.9 (2)
C13A—C8A—C7A122.7 (2)C13B—C8B—C7B122.7 (2)
C10A—C9A—C8A121.1 (2)C8B—C9B—C10B121.4 (2)
C10A—C9A—H9AA119.5C8B—C9B—H9BA119.3
C8A—C9A—H9AA119.5C10B—C9B—H9BA119.3
C11A—C10A—C9A119.8 (2)C11B—C10B—C9B119.7 (2)
C11A—C10A—H10A120.1C11B—C10B—H10B120.1
C9A—C10A—H10A120.1C9B—C10B—H10B120.1
O3A—C11A—C10A124.9 (2)O3B—C11B—C10B125.0 (2)
O3A—C11A—C12A114.88 (19)O3B—C11B—C12B115.24 (19)
C10A—C11A—C12A120.2 (2)C10B—C11B—C12B119.7 (2)
O2A—C12A—C13A125.7 (2)O2B—C12B—C13B124.9 (2)
O2A—C12A—C11A114.77 (19)O2B—C12B—C11B114.97 (19)
C13A—C12A—C11A119.53 (19)C13B—C12B—C11B120.2 (2)
C12A—C13A—C8A120.4 (2)C12B—C13B—C8B120.6 (2)
C12A—C13A—H13A119.8C12B—C13B—H13B119.7
C8A—C13A—H13A119.8C8B—C13B—H13B119.7
O2A—C14A—H14A109.5O2B—C14B—H14D109.5
O2A—C14A—H14B109.5O2B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
O2A—C14A—H14C109.5O2B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
O3A—C15A—H15A109.5O3B—C15B—H15D109.5
O3A—C15A—H15B109.5O3B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O3A—C15A—H15C109.5O3B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C4A—S1A—C1A—C2A−0.2 (2)C4B—S1B—C1B—C2B0.18 (19)
S1A—C1A—C2A—C3A0.3 (3)S1B—C1B—C2B—C3B0.5 (3)
C1A—C2A—C3A—C4A−0.3 (3)C1B—C2B—C3B—C4B−1.1 (3)
C2A—C3A—C4A—C5A−177.2 (2)C2B—C3B—C4B—C5B−177.3 (2)
C2A—C3A—C4A—S1A0.1 (2)C2B—C3B—C4B—S1B1.2 (2)
C1A—S1A—C4A—C3A0.04 (18)C1B—S1B—C4B—C3B−0.78 (17)
C1A—S1A—C4A—C5A177.78 (18)C1B—S1B—C4B—C5B177.88 (17)
C3A—C4A—C5A—O1A−180.0 (2)C3B—C4B—C5B—O1B178.9 (2)
S1A—C4A—C5A—O1A2.8 (3)S1B—C4B—C5B—O1B0.6 (3)
C3A—C4A—C5A—C6A0.8 (3)C3B—C4B—C5B—C6B−0.5 (3)
S1A—C4A—C5A—C6A−176.47 (16)S1B—C4B—C5B—C6B−178.83 (15)
O1A—C5A—C6A—C7A−2.0 (3)O1B—C5B—C6B—C7B−4.4 (3)
C4A—C5A—C6A—C7A177.2 (2)C4B—C5B—C6B—C7B175.0 (2)
C5A—C6A—C7A—C8A−179.6 (2)C5B—C6B—C7B—C8B−178.5 (2)
C6A—C7A—C8A—C9A−177.7 (2)C6B—C7B—C8B—C9B179.7 (2)
C6A—C7A—C8A—C13A0.7 (4)C6B—C7B—C8B—C13B0.8 (4)
C13A—C8A—C9A—C10A−1.7 (3)C13B—C8B—C9B—C10B1.1 (3)
C7A—C8A—C9A—C10A176.7 (2)C7B—C8B—C9B—C10B−177.9 (2)
C8A—C9A—C10A—C11A0.5 (4)C8B—C9B—C10B—C11B−0.2 (3)
C15A—O3A—C11A—C10A1.0 (3)C15B—O3B—C11B—C10B3.4 (3)
C15A—O3A—C11A—C12A−178.46 (19)C15B—O3B—C11B—C12B−177.40 (19)
C9A—C10A—C11A—O3A−178.4 (2)C9B—C10B—C11B—O3B178.4 (2)
C9A—C10A—C11A—C12A1.0 (3)C9B—C10B—C11B—C12B−0.8 (3)
C14A—O2A—C12A—C13A−7.8 (3)C14B—O2B—C12B—C13B1.0 (3)
C14A—O2A—C12A—C11A172.71 (19)C14B—O2B—C12B—C11B−178.52 (19)
O3A—C11A—C12A—O2A−2.1 (3)O3B—C11B—C12B—O2B1.3 (3)
C10A—C11A—C12A—O2A178.4 (2)C10B—C11B—C12B—O2B−179.50 (19)
O3A—C11A—C12A—C13A178.34 (19)O3B—C11B—C12B—C13B−178.29 (18)
C10A—C11A—C12A—C13A−1.1 (3)C10B—C11B—C12B—C13B1.0 (3)
O2A—C12A—C13A—C8A−179.7 (2)O2B—C12B—C13B—C8B−179.62 (19)
C11A—C12A—C13A—C8A−0.2 (3)C11B—C12B—C13B—C8B−0.1 (3)
C9A—C8A—C13A—C12A1.6 (3)C9B—C8B—C13B—C12B−0.9 (3)
C7A—C8A—C13A—C12A−176.8 (2)C7B—C8B—C13B—C12B178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7A—H7AA···O1A0.932.432.792 (3)103
C1B—H1BA···O1Ai0.932.363.261 (3)162
C7B—H7BA···O1B0.932.472.816 (3)102
C14B—H14F···O1Bii0.962.533.401 (3)151
C15A—H15A···Cg1iii0.962.923.616 (3)130
C10A—H10A···Cg3iv0.932.843.636 (3)144
C3A—H3AA···Cg40.932.793.370 (3)122

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−3/2, −y+1/2, z−3/2; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2626).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710. [PubMed]
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography