PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1437.
Published online 2008 July 9. doi:  10.1107/S1600536808020758
PMCID: PMC2962068

1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-benzimidazole

Abstract

In the mol­ecule of the title compound, C20H16Cl2N2O2, the planar benzimidazole ring system is oriented with respect to the furan and dichloro­benzene rings at dihedral angles of 53.39 (6) and 31.04 (5)°, respectively. In the crystal structure, inter­molecular C—H(...)Cl hydrogen bonds link the mol­ecules into centrosymmetric R 2 2(8) dimers. These dimers are connected via a C—H(...)π contact between the benzimidazole and the furan rings, and π–π contacts between the benz­imidazole and dichloro­benzene ring systems [centroid–centroid distances = 3.505 (1), 3.567 (1), 3.505 (1) and 3.567 (1) Å].

Related literature

For general background, see: Brammer & Feczko (1988 [triangle]); Özel Güven et al. (2007a [triangle],b [triangle]). For related literature, see: Song & Shin (1998 [triangle]); Freer et al. (1986 [triangle]); Peeters et al. (1996 [triangle]); Peeters et al. (1979a [triangle],b [triangle]); Caira et al. (2004 [triangle]). For ring motif details, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1437-scheme1.jpg

Experimental

Crystal data

  • C20H16Cl2N2O2
  • M r = 387.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1437-efi1.jpg
  • a = 12.7720 (3) Å
  • b = 12.9761 (2) Å
  • c = 21.9732 (5) Å
  • V = 3641.63 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 120 (2) K
  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Bruker Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.835, T max = 0.929
  • 27000 measured reflections
  • 4181 independent reflections
  • 3311 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.122
  • S = 1.10
  • 4181 reflections
  • 300 parameters
  • All H-atom parameters refined
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020758/si2098sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020758/si2098Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (grant No. 2004-13-02-16).

supplementary crystallographic information

Comment

In recent years, there has been increasing interest in synthesis of heterocyclic compounds having biological and commercial importances. Clotrimazole (Song & Shin, 1998), econazole (Freer et al., 1986), ketoconazole (Peeters et al., 1979a) and miconazole (Peeters et al., 1979b) are well-known imidazole ring containing, while itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing, azole derivatives. They have been developed for clinical uses as antifungal agents (Brammer & Feczko, 1988). Lately, similar structures to miconazole and econazole have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). In these structures, benzimidazole ring has been found in place of the imidazole ring of miconazole and econazole. We report herein the crystal structure of title benzimidazole derivative.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 53.39 (6)° and 31.04 (5)°, respectively. Atoms C8, C9 and C14 are 0.063 (2), 0.065 (2) and -0.039 (2) Å away from the ring planes of benzimidazole, furan and dichlorobenzene, respectively. So, they are coplanar with the adjacent rings. The N1-C8-C9, C9-O2-C14 and C8-C9-C10, O2-C9-C10 bond angles are nearly equal, while O2-C9-C8 and O2-C14-C15 bond angles are different from each other. The N1-C1-N2, N2-C2-C7 and C2-C7-C6 bond angles are enlarged, while C5-C6-C7 bond angle is narrowed. In dichlorobenzene ring, the C15-C16-C17 and C15-C20-C19 bond angles are enlarged, while C16-C15-C20 bond angle is highly narrowed (Table 1), probably due to the intermolecular C-H···Cl hydrogen bonds (Table 2).

In the crystal structure, intermolecular weak C-H···Cl hydrogen bonds (Table 2) link the molecules to form a R22(8) ring motif (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The C—H···π contact (Table 2) between the benzimidazole and the furan rings and π—π contacts between the benzimidazole and dichlorobenzene ring systems Cg2···Cg4i, Cg3···Cg4i, Cg4···Cg2ii and Cg4···Cg3ii [symmetry codes: (i) -1/2 + x, 1/2 - y, 1 - z; (ii) 1/2 + x, 1/2 - y, 1 - z, where Cg2, Cg3 and Cg4 are centroids of the rings (N1/N2/C1/C2/C7), (C2-C7) and (C15-C20), respectively] further stabilize the structure, with centroid–centroid distances of 3.505 (1), 3.567 (1), 3.505 (1) and 3.567 (1) Å, respectively.

Experimental

The title compound, was synthesized by the reaction of 2-(1H-benzimidazol -1-yl)-1-(furan-2-yl)ethanol (Özel Güven et al., 2007b) with NaH and appropriate benzyl halide. A solution of alcohol (150 mg, 0.657 mmol) in DMF (1.5 ml) was added to NaH (19.7 mg, 0.821 mmol) in small fractions. The appropriate benzyl halide (158 mg, 0.657 mmol) in DMF (0.8 ml) was then added dropwise. The mixture was stirred at room temperature for 2 h, and the excess hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate, and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform-methanol as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from a mixture of hexane/ethyl acetate (1:2) (yield; 124 mg, 49%).

Refinement

H atoms were located in difference syntheses and refined isotropically [C—H = 0.92 (2)–1.03 (2) Å; Uiso(H) = 0.015 (4)–0.037 (6) Å2].

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H16Cl2N2O2F000 = 1600
Mr = 387.25Dx = 1.413 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4594 reflections
a = 12.7720 (3) Åθ = 2.9–27.5º
b = 12.9761 (2) ŵ = 0.37 mm1
c = 21.9732 (5) ÅT = 120 (2) K
V = 3641.63 (13) Å3Block, colorless
Z = 80.50 × 0.40 × 0.20 mm

Data collection

Bruker Nonius KappaCCD diffractometer4181 independent reflections
Radiation source: fine-focus sealed tube3311 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.8º
T = 120(2) Kθmin = 3.1º
[var phi] and ω scansh = −13→16
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)k = −14→16
Tmin = 0.835, Tmax = 0.929l = −28→22
27000 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.047  w = 1/[σ2(Fo2) + (0.0688P)2 + 0.7891P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.50 e Å3
4181 reflectionsΔρmin = −0.49 e Å3
300 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0141 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.52705 (4)0.15868 (4)0.27568 (2)0.03062 (16)
Cl20.46363 (3)0.33374 (4)0.49707 (2)0.02746 (16)
O10.44665 (9)−0.10157 (10)0.42074 (6)0.0231 (3)
O20.36998 (8)0.13809 (9)0.42664 (5)0.0192 (3)
N10.24117 (10)0.14633 (11)0.53080 (7)0.0183 (3)
N20.22763 (11)0.31228 (12)0.56340 (7)0.0216 (3)
C10.21768 (13)0.24739 (13)0.51763 (9)0.0205 (4)
H10.1946 (14)0.2656 (15)0.4777 (9)0.018 (5)*
C20.26218 (12)0.24900 (13)0.61103 (8)0.0186 (4)
C30.28517 (13)0.27431 (15)0.67109 (9)0.0241 (4)
H30.2801 (14)0.3425 (15)0.6832 (9)0.018 (5)*
C40.31590 (13)0.19444 (16)0.70928 (10)0.0270 (4)
H40.3323 (15)0.2095 (16)0.7491 (10)0.026 (5)*
C50.32404 (14)0.09079 (16)0.68881 (9)0.0269 (4)
H50.3477 (15)0.0361 (15)0.7160 (9)0.026 (5)*
C60.30207 (13)0.06387 (14)0.62937 (9)0.0223 (4)
H60.3068 (15)−0.0068 (17)0.6154 (9)0.028 (5)*
C70.27122 (12)0.14474 (13)0.59120 (8)0.0186 (4)
C80.24218 (13)0.05901 (14)0.48853 (9)0.0198 (4)
H810.1896 (15)0.0733 (16)0.4578 (9)0.026 (5)*
H820.2223 (14)−0.0048 (16)0.5104 (8)0.020 (5)*
C90.34849 (12)0.04456 (13)0.46028 (8)0.0178 (4)
H90.3996 (14)0.0367 (14)0.4940 (8)0.015 (4)*
C100.35358 (12)−0.05012 (13)0.42090 (8)0.0190 (4)
C110.28836 (14)−0.09792 (15)0.38168 (9)0.0249 (4)
H110.2189 (17)−0.0773 (17)0.3727 (10)0.035 (6)*
C120.34340 (15)−0.18372 (15)0.35581 (9)0.0266 (4)
H120.3178 (16)−0.2308 (17)0.3271 (10)0.031 (6)*
C130.43807 (15)−0.18196 (15)0.38007 (9)0.0252 (4)
H130.4966 (17)−0.2303 (18)0.3736 (9)0.032 (6)*
C140.47740 (13)0.14762 (14)0.41337 (9)0.0206 (4)
H1410.5151 (15)0.1398 (14)0.4508 (10)0.019 (5)*
H1420.4958 (16)0.0907 (17)0.3863 (10)0.030 (5)*
C150.49591 (12)0.25242 (13)0.38536 (8)0.0177 (4)
C160.51955 (13)0.26642 (14)0.32382 (8)0.0204 (4)
C170.53897 (13)0.36388 (15)0.29854 (9)0.0243 (4)
H170.5544 (16)0.3651 (17)0.2524 (11)0.037 (6)*
C180.53539 (14)0.45094 (15)0.33540 (10)0.0263 (4)
H180.5515 (16)0.5199 (17)0.3202 (10)0.031 (6)*
C190.51163 (13)0.44195 (14)0.39651 (9)0.0232 (4)
H190.5110 (15)0.5037 (16)0.4233 (9)0.025 (5)*
C200.49238 (13)0.34367 (14)0.42002 (8)0.0190 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0346 (3)0.0290 (3)0.0282 (3)0.00275 (18)−0.0013 (2)−0.0095 (2)
Cl20.0261 (2)0.0342 (3)0.0221 (3)−0.00255 (17)0.00426 (17)−0.00402 (19)
O10.0216 (6)0.0225 (7)0.0253 (7)0.0020 (5)0.0008 (5)−0.0037 (5)
O20.0150 (5)0.0167 (6)0.0258 (7)−0.0010 (4)0.0025 (5)0.0039 (5)
N10.0166 (7)0.0175 (8)0.0208 (8)0.0010 (5)0.0026 (6)0.0011 (6)
N20.0190 (7)0.0190 (8)0.0268 (9)0.0019 (6)0.0037 (6)0.0013 (6)
C10.0179 (8)0.0191 (9)0.0246 (10)0.0015 (7)0.0028 (7)0.0036 (8)
C20.0132 (7)0.0181 (9)0.0246 (10)0.0007 (6)0.0035 (7)−0.0012 (7)
C30.0175 (8)0.0240 (10)0.0308 (11)0.0001 (7)0.0023 (7)−0.0072 (8)
C40.0187 (8)0.0375 (11)0.0249 (11)0.0014 (7)−0.0022 (7)−0.0044 (9)
C50.0209 (8)0.0288 (10)0.0309 (11)0.0035 (7)−0.0013 (8)0.0042 (9)
C60.0189 (8)0.0202 (9)0.0279 (10)0.0018 (7)0.0008 (7)0.0019 (8)
C70.0125 (7)0.0208 (9)0.0224 (9)0.0002 (6)0.0021 (7)−0.0005 (7)
C80.0180 (8)0.0184 (9)0.0228 (10)−0.0029 (6)0.0009 (7)−0.0012 (7)
C90.0175 (8)0.0162 (8)0.0198 (9)−0.0010 (6)−0.0004 (7)0.0017 (7)
C100.0189 (8)0.0187 (9)0.0194 (9)0.0001 (6)0.0034 (7)0.0029 (7)
C110.0235 (9)0.0273 (10)0.0240 (10)−0.0006 (7)−0.0010 (7)−0.0003 (8)
C120.0321 (10)0.0253 (10)0.0224 (10)−0.0033 (8)0.0019 (8)−0.0047 (8)
C130.0304 (9)0.0216 (9)0.0235 (10)0.0019 (7)0.0060 (8)−0.0044 (8)
C140.0154 (8)0.0179 (9)0.0285 (11)−0.0003 (6)0.0027 (7)0.0026 (8)
C150.0118 (7)0.0182 (9)0.0233 (9)0.0002 (6)0.0006 (7)0.0012 (7)
C160.0166 (8)0.0214 (9)0.0232 (10)0.0002 (6)−0.0015 (7)−0.0027 (7)
C170.0214 (9)0.0286 (10)0.0229 (11)−0.0012 (7)−0.0019 (7)0.0061 (8)
C180.0243 (9)0.0203 (10)0.0344 (11)−0.0028 (7)−0.0040 (8)0.0076 (8)
C190.0198 (8)0.0188 (9)0.0311 (11)−0.0009 (7)−0.0033 (7)−0.0026 (8)
C200.0144 (7)0.0225 (9)0.0200 (9)0.0006 (6)−0.0009 (7)−0.0012 (7)

Geometric parameters (Å, °)

Cl1—C161.7557 (19)C8—H820.99 (2)
Cl2—C201.7373 (19)C9—C81.505 (2)
O1—C101.363 (2)C9—C101.504 (2)
O1—C131.378 (2)C9—H90.992 (18)
O2—C91.4474 (19)C10—C111.350 (2)
O2—C141.4081 (19)C11—C121.434 (3)
N1—C11.376 (2)C11—H110.95 (2)
N1—C71.382 (2)C12—H120.94 (2)
N1—C81.465 (2)C13—C121.322 (3)
N2—C11.318 (2)C13—H130.99 (2)
C1—H10.95 (2)C14—H1410.96 (2)
C2—N21.401 (2)C14—H1420.98 (2)
C2—C31.391 (3)C15—C141.511 (2)
C2—C71.426 (2)C15—C161.397 (3)
C3—H30.926 (19)C15—C201.409 (2)
C4—C31.390 (3)C17—C161.403 (3)
C4—C51.422 (3)C17—C181.391 (3)
C4—H40.92 (2)C17—H171.03 (2)
C5—H50.98 (2)C18—H180.98 (2)
C6—C51.381 (3)C19—C181.382 (3)
C6—C71.400 (2)C19—H190.99 (2)
C6—H60.97 (2)C20—C191.398 (2)
C8—H810.97 (2)
C10—O1—C13107.64 (14)C10—C9—H9108.5 (10)
C14—O2—C9111.36 (12)O1—C10—C9116.05 (14)
C1—N1—C7106.07 (15)C11—C10—O1108.15 (15)
C1—N1—C8127.26 (16)C11—C10—C9135.73 (15)
C7—N1—C8126.52 (15)C10—C11—C12107.90 (16)
C1—N2—C2103.05 (15)C10—C11—H11125.6 (14)
N1—C1—H1119.8 (12)C12—C11—H11126.5 (14)
N2—C1—N1115.30 (17)C11—C12—H12127.0 (13)
N2—C1—H1124.9 (12)C13—C12—C11105.97 (18)
N2—C2—C7110.68 (15)C13—C12—H12127.0 (13)
C3—C2—N2129.52 (17)O1—C13—H13121.0 (12)
C3—C2—C7119.78 (16)C12—C13—O1110.33 (17)
C4—C3—C2117.14 (18)C12—C13—H13128.6 (12)
C4—C3—H3123.9 (12)O2—C14—C15108.41 (13)
C2—C3—H3118.9 (12)O2—C14—H141107.6 (12)
C3—C4—C5122.33 (19)O2—C14—H142107.1 (12)
C3—C4—H4118.7 (13)C15—C14—H141111.5 (12)
C5—C4—H4119.0 (13)C15—C14—H142113.3 (13)
C4—C5—H5121.1 (12)H141—C14—H142108.7 (17)
C6—C5—C4121.58 (18)C16—C15—C20114.88 (15)
C6—C5—H5117.3 (12)C16—C15—C14123.02 (16)
C5—C6—C7115.74 (17)C20—C15—C14122.09 (16)
C5—C6—H6121.8 (12)C15—C16—C17122.57 (16)
C7—C6—H6122.5 (12)C15—C16—Cl1119.42 (13)
N1—C7—C6131.67 (17)C17—C16—Cl1118.00 (14)
N1—C7—C2104.89 (14)C16—C17—H17115.9 (12)
C6—C7—C2123.42 (17)C18—C17—C16119.71 (18)
N1—C8—C9111.46 (14)C18—C17—H17124.4 (12)
N1—C8—H81106.7 (12)C17—C18—H18122.6 (13)
N1—C8—H82109.6 (11)C19—C18—C17120.31 (18)
C9—C8—H81111.2 (12)C19—C18—H18117.1 (13)
C9—C8—H82109.1 (11)C18—C19—C20118.35 (18)
H81—C8—H82108.7 (16)C18—C19—H19120.6 (12)
O2—C9—C10112.52 (14)C20—C19—H19121.0 (12)
O2—C9—C8106.10 (13)C15—C20—Cl2118.12 (13)
O2—C9—H9110.0 (10)C19—C20—C15124.17 (17)
C8—C9—H9107.4 (10)C19—C20—Cl2117.71 (14)
C10—C9—C8112.22 (14)
C13—O1—C10—C110.53 (19)C5—C6—C7—C2−0.1 (2)
C13—O1—C10—C9−176.90 (14)O2—C9—C8—N1−61.67 (18)
C10—O1—C13—C12−1.1 (2)O2—C9—C10—C11−81.3 (2)
C14—O2—C9—C10−74.57 (17)O2—C9—C10—O195.24 (17)
C14—O2—C9—C8162.36 (15)C8—C9—C10—C1138.3 (3)
C9—O2—C14—C15−173.07 (14)C8—C9—C10—O1−145.19 (15)
C7—N1—C1—N2−0.99 (19)C10—C9—C8—N1175.07 (14)
C8—N1—C1—N2−176.72 (15)O1—C10—C11—C120.1 (2)
C1—N1—C7—C20.65 (16)C9—C10—C11—C12176.83 (18)
C1—N1—C7—C6178.95 (17)C10—C11—C12—C13−0.8 (2)
C8—N1—C7—C2176.41 (14)O1—C13—C12—C111.1 (2)
C8—N1—C7—C6−5.3 (3)C16—C15—C14—O2−108.33 (18)
C1—N1—C8—C990.6 (2)C20—C15—C14—O272.8 (2)
C7—N1—C8—C9−84.3 (2)C14—C15—C16—Cl10.8 (2)
C2—N2—C1—N10.85 (18)C14—C15—C16—C17−178.50 (15)
C3—C2—N2—C1−179.27 (17)C20—C15—C16—Cl1179.66 (11)
C7—C2—N2—C1−0.38 (17)C20—C15—C16—C170.4 (2)
N2—C2—C3—C4178.50 (16)C14—C15—C20—Cl2−1.0 (2)
C7—C2—C3—C4−0.3 (2)C14—C15—C20—C19178.26 (15)
N2—C2—C7—N1−0.18 (17)C16—C15—C20—Cl2−179.96 (12)
N2—C2—C7—C6−178.66 (15)C16—C15—C20—C19−0.7 (2)
C3—C2—C7—N1178.83 (14)C18—C17—C16—Cl1−178.99 (13)
C3—C2—C7—C60.3 (2)C18—C17—C16—C150.3 (3)
C5—C4—C3—C20.0 (3)C16—C17—C18—C19−0.8 (3)
C3—C4—C5—C60.3 (3)C20—C19—C18—C170.5 (3)
C7—C6—C5—C4−0.2 (2)Cl2—C20—C19—C18179.51 (13)
C5—C6—C7—N1−178.12 (16)C15—C20—C19—C180.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H19···Cl2i1.00 (2)2.76 (2)3.7470 (19)172.0 (15)
C1—H1···Cg1ii0.95 (2)2.533 (19)3.441 (2)158.8 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2098).

References

  • Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brammer, K. W. & Feczko, J. M. (1988). Antifungal Drugs, edited by V. St Georgiev, pp. 561–563. New York: NY Acad. Sci. [PubMed]
  • Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci.93, 601–611. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Acta Cryst. B35, 2461–2464.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Bull. Soc. Chim. Belg.88, 265–272.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, H. & Shin, H.-S. (1998). Acta Cryst. C54, 1675–1677. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography