PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1421.
Published online 2008 July 5. doi:  10.1107/S1600536808020229
PMCID: PMC2962055

N-(2-Chloro­phen­yl)-2-methyl­benzamide

Abstract

In the structure of the title compound (N2CP2MBA), C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chloro­phen­yl)benzamide and 2-methyl-N-phenyl­benzamide. The amide group makes almost the same dihedral angles of 41.2 (14) and 42.2 (13)° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3)°. The mol­ecules in N2CP2MBA are packed into chains through N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2008 [triangle]); Gowda, Foro et al. (2007 [triangle]); Gowda, Sowmya et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1421-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO
  • M r = 245.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1421-efi1.jpg
  • a = 4.8881 (4) Å
  • b = 24.318 (2) Å
  • c = 10.0562 (8) Å
  • β = 90.373 (6)°
  • V = 1195.34 (17) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.67 mm−1
  • T = 299 (2) K
  • 0.55 × 0.13 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.695, T max = 0.878
  • 2264 measured reflections
  • 2126 independent reflections
  • 1695 reflections with I > 2σ(I)
  • R int = 0.050
  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.333
  • S = 1.49
  • 2126 reflections
  • 158 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020229/bg2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020229/bg2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the solid state geometries of benzanilides,in the present work, the structure of 2-methyl-N-(2-chlorophenyl)-benzamide (N2CP2MBA) has been determined Gowda et al. (2003, 2008). Gowda, Foro et al. (2007); Gowda, Sowmya et al. (2007). In the structure of N2CP2MBA (Fig. 1), the conformations of the N—H and C═O bonds are trans to each other. Further, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and that of the C═O bond is syn to the ortho-methyl substituent in the benzoyl ring. These observations are similar to those observed in 2-chloro-N-(2-Chlorophenyl)-benzamide (N2CP2CBA) (Gowda et al., 2007a) and 2-methyl-N-(phenyl)-benzamide (NP2MBA) (Gowda et al., 2008). The bond parameters in N2CP2MBA are similar to those in N2CP2CBA, NP2MBA, N-(2-Chlorophenyl)-benzamide and other benzanilides Gowda et al. (2003, 2008). Gowda, Foro et al. (2007); Gowda, Sowmya et al. (2007). The amide group, –NHCO– makes almost the same dihedral angles of 41.2 (14)° and 42.2 (13)° with the aniline and benzoyl rings, respectively, while that between the benzoyl and aniline rings is only 7.4 (3)°. The packing diagram of N2CP2MBA molecules showing the hydrogen bonds N—H···O (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The NH atom was located in difference map and refined with a restrained N—H = 0.88 (6) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). In spite of the refinement proceeding and converging smoothly, the R2 index did not decrese from a rather large value (0.33). This might be atributed to poor crystal quality in the available samples.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines..

Crystal data

C14H12ClNOF000 = 512
Mr = 245.70Dx = 1.365 Mg m3
Monoclinic, P21/nCu Kα radiation λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.8881 (4) Åθ = 7.3–21.6º
b = 24.318 (2) ŵ = 2.67 mm1
c = 10.0562 (8) ÅT = 299 (2) K
β = 90.373 (6)ºRod, colourless
V = 1195.34 (17) Å30.55 × 0.13 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.050
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 3.6º
T = 299(2) Kh = −5→5
ω/2θ scansk = −29→0
Absorption correction: ψ scan(North et al., 1968)l = −12→1
Tmin = 0.695, Tmax = 0.8783 standard reflections
2264 measured reflections every 120 min
2126 independent reflections intensity decay: 1.5%
1695 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.333  w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
S = 1.49(Δ/σ)max < 0.001
2126 reflectionsΔρmax = 0.59 e Å3
158 parametersΔρmin = −0.64 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5268 (8)0.58356 (18)0.9109 (4)0.0391 (10)
C20.3925 (9)0.59484 (18)0.7921 (5)0.0435 (10)
C30.4354 (12)0.5627 (2)0.6800 (5)0.0561 (13)
H30.34250.57070.60140.067*
C40.6138 (13)0.5193 (2)0.6847 (5)0.0623 (15)
H40.64380.49810.60920.075*
C50.7482 (11)0.5073 (2)0.8016 (5)0.0576 (13)
H50.86740.47760.80580.069*
C60.7067 (10)0.5393 (2)0.9124 (5)0.0514 (12)
H60.80140.53110.99040.062*
C70.6651 (8)0.63040 (19)1.1158 (4)0.0392 (10)
C80.5627 (8)0.66363 (17)1.2305 (4)0.0377 (10)
C90.6654 (10)0.65413 (18)1.3586 (5)0.0443 (11)
C100.5648 (11)0.6868 (2)1.4611 (5)0.0554 (13)
H100.62930.68121.54730.067*
C110.3720 (12)0.7272 (2)1.4380 (6)0.0632 (15)
H110.30620.74811.50830.076*
C120.2767 (11)0.7365 (2)1.3106 (6)0.0608 (14)
H120.14950.76421.29450.073*
C130.3710 (10)0.7046 (2)1.2075 (5)0.0493 (11)
H130.30540.71061.12160.059*
C140.8698 (11)0.6100 (2)1.3901 (5)0.0549 (13)
H14A1.03900.61791.34610.066*
H14B0.80100.57511.35990.066*
H14C0.90040.60861.48440.066*
N10.4730 (7)0.61465 (17)1.0252 (4)0.0439 (9)
H1N0.306 (13)0.623 (2)1.050 (5)0.053*
O10.9068 (6)0.61743 (16)1.1044 (3)0.0565 (10)
Cl10.1723 (3)0.65063 (6)0.78357 (13)0.0601 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.027 (2)0.052 (2)0.038 (2)0.0007 (16)0.0020 (16)−0.0012 (17)
C20.037 (2)0.050 (2)0.043 (2)0.0006 (18)−0.0003 (18)0.0006 (19)
C30.057 (3)0.067 (3)0.044 (2)0.005 (2)−0.011 (2)−0.004 (2)
C40.067 (3)0.070 (3)0.050 (3)0.011 (3)0.001 (2)−0.019 (2)
C50.058 (3)0.058 (3)0.057 (3)0.016 (2)0.003 (2)−0.005 (2)
C60.045 (3)0.065 (3)0.044 (2)0.005 (2)−0.0031 (19)0.001 (2)
C70.025 (2)0.058 (3)0.035 (2)−0.0011 (17)0.0025 (16)0.0022 (18)
C80.0257 (19)0.046 (2)0.041 (2)−0.0081 (16)0.0057 (16)−0.0031 (18)
C90.040 (2)0.053 (3)0.041 (2)−0.0059 (18)0.0039 (19)−0.0012 (18)
C100.058 (3)0.065 (3)0.044 (2)−0.014 (2)0.004 (2)−0.014 (2)
C110.058 (3)0.064 (3)0.067 (3)−0.001 (2)0.014 (3)−0.028 (3)
C120.048 (3)0.048 (3)0.086 (4)0.001 (2)0.005 (3)−0.015 (2)
C130.039 (2)0.057 (3)0.052 (3)0.0017 (19)0.002 (2)0.001 (2)
C140.044 (3)0.072 (3)0.048 (3)0.006 (2)−0.003 (2)0.007 (2)
N10.0276 (18)0.066 (2)0.0378 (19)0.0020 (16)−0.0001 (15)−0.0057 (17)
O10.0251 (16)0.092 (3)0.0523 (19)0.0015 (16)0.0009 (13)−0.0153 (18)
Cl10.0564 (9)0.0687 (10)0.0551 (9)0.0175 (5)−0.0062 (6)0.0061 (5)

Geometric parameters (Å, °)

C1—C21.387 (6)C8—C131.386 (7)
C1—C61.390 (7)C8—C91.399 (6)
C1—N11.402 (5)C9—C101.394 (6)
C2—C31.388 (7)C9—C141.499 (7)
C2—Cl11.734 (5)C10—C111.380 (8)
C3—C41.369 (7)C10—H100.9300
C3—H30.9300C11—C121.379 (8)
C4—C51.375 (8)C11—H110.9300
C4—H40.9300C12—C131.377 (7)
C5—C61.374 (7)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H14A0.9600
C7—O11.229 (5)C14—H14B0.9600
C7—N11.359 (5)C14—H14C0.9600
C7—C81.497 (6)N1—H1N0.88 (6)
C2—C1—C6117.3 (4)C10—C9—C8117.4 (5)
C2—C1—N1120.6 (4)C10—C9—C14119.3 (4)
C6—C1—N1122.1 (4)C8—C9—C14123.2 (4)
C1—C2—C3121.0 (4)C11—C10—C9121.7 (5)
C1—C2—Cl1119.2 (3)C11—C10—H10119.2
C3—C2—Cl1119.8 (4)C9—C10—H10119.2
C4—C3—C2120.4 (5)C12—C11—C10120.0 (5)
C4—C3—H3119.8C12—C11—H11120.0
C2—C3—H3119.8C10—C11—H11120.0
C3—C4—C5119.6 (5)C13—C12—C11119.6 (5)
C3—C4—H4120.2C13—C12—H12120.2
C5—C4—H4120.2C11—C12—H12120.2
C6—C5—C4120.1 (5)C12—C13—C8120.6 (5)
C6—C5—H5120.0C12—C13—H13119.7
C4—C5—H5120.0C8—C13—H13119.7
C5—C6—C1121.7 (4)C9—C14—H14A109.5
C5—C6—H6119.1C9—C14—H14B109.5
C1—C6—H6119.1H14A—C14—H14B109.5
O1—C7—N1121.7 (4)C9—C14—H14C109.5
O1—C7—C8122.5 (4)H14A—C14—H14C109.5
N1—C7—C8115.8 (3)H14B—C14—H14C109.5
C13—C8—C9120.7 (4)C7—N1—C1124.7 (4)
C13—C8—C7119.2 (4)C7—N1—H1N113 (3)
C9—C8—C7120.0 (4)C1—N1—H1N122 (3)
C6—C1—C2—C30.5 (7)C13—C8—C9—C100.8 (6)
N1—C1—C2—C3−177.1 (4)C7—C8—C9—C10179.2 (4)
C6—C1—C2—Cl1−178.4 (3)C13—C8—C9—C14179.1 (4)
N1—C1—C2—Cl13.9 (6)C7—C8—C9—C14−2.5 (6)
C1—C2—C3—C4−0.5 (8)C8—C9—C10—C11−0.2 (7)
Cl1—C2—C3—C4178.5 (4)C14—C9—C10—C11−178.6 (5)
C2—C3—C4—C50.7 (9)C9—C10—C11—C12−0.9 (8)
C3—C4—C5—C6−1.0 (9)C10—C11—C12—C131.3 (9)
C4—C5—C6—C11.1 (8)C11—C12—C13—C8−0.7 (8)
C2—C1—C6—C5−0.8 (7)C9—C8—C13—C12−0.4 (7)
N1—C1—C6—C5176.8 (5)C7—C8—C13—C12−178.8 (4)
O1—C7—C8—C13139.0 (5)O1—C7—N1—C1−1.0 (7)
N1—C7—C8—C13−41.8 (6)C8—C7—N1—C1179.8 (4)
O1—C7—C8—C9−39.4 (6)C2—C1—N1—C7−141.4 (5)
N1—C7—C8—C9139.8 (4)C6—C1—N1—C741.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (6)2.03 (6)2.886 (5)163 (5)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2196).

References

  • Enraf–Nonius (1996). CAD-4-PC Software Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography