PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1414.
Published online 2008 July 5. doi:  10.1107/S1600536808020114
PMCID: PMC2962048

1-(2-Furo­yl)-3-(o-tol­yl)thio­urea

Abstract

The title compound, C13H12N2O2S, was synthesized from furoyl isothio­cyanate and o-toluidine in dry acetone. The thio­urea group is in the thio­amide form. The central thio­urea fragment makes dihedral angles of 2.6 (1) and 22.4 (1)° with the ketofuran group and the benzene ring, respectively. The mol­ecular structure is stabilized by N—H(...)O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by a pair of N—H(...)S hydrogen bonds to form a dimer with an R 2 2(6) ring motif.

Related literature

For general background, see: Aly et al. (2007 [triangle]); Koch (2001 [triangle]); Estévez-Hernández et al. (2007 [triangle]). For related structures, see: Theodoro et al. (2008 [triangle]); Duque et al. (2008 [triangle]). For the synthesis, see: Otazo-Sánchez et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1414-scheme1.jpg

Experimental

Crystal data

  • C13H12N2O2S
  • M r = 260.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1414-efi1.jpg
  • a = 6.0976 (1) Å
  • b = 16.6689 (6) Å
  • c = 13.1462 (4) Å
  • β = 108.765 (2)°
  • V = 1265.16 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 294 K
  • 0.50 × 0.08 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: Gaussian (Coppens et al., 1965 [triangle]) T min = 0.925, T max = 0.983
  • 8242 measured reflections
  • 2408 independent reflections
  • 1594 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.130
  • S = 1.02
  • 2408 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020114/ci2623sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020114/ci2623Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from Brazilian agency CNPq.

supplementary crystallographic information

Comment

Thiourea and its derivatives form a versatile family of ligands suitable to form complexes with ions of transition metals through the S atom (Aly et al., 2007). Of analytical interest is the potential application of these compounds as ionophores or chemical modifiers in potenciometric and amperometric sensors (Estévez-Hernández et al., 2007). The derived crystal structures help to understand the behaviour of these ligands as ionophores and also the complex formation with salts of the heavy metals. The title compound (Fig.1) is another example of our newly synthesized furoylthiourea derivatives.

The title compound crystallizes in the thioamide form. The bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 [1.652 (2) Å] and C1—O1 [1.221 (2) Å] bonds both show the expected double-bond character. The short values of the C2—N1 [1.400 (3) Å], C2—N2 [1.330 (3) Å] and C1—N1 [1.377 (2) Å] bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group [O1/O2/C1/C3-C6] is nearly coplanar with the plane of the thiourea fragment [N1/N2/C2/S1, dihedral angle 2.6 (1)°], whereas the C7-C12 benzene ring is inclined by 22.4 (1)°. The trans-cis geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig.1 and Table 1). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig.2 and Table 1) between centrosymmetrically related molecules forming dimers stacked along the [100] direction.

Experimental

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with o-toluidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 387–388 K).

Refinement

H atoms were placed in calculated positions with N-H = 0.86 Å and C-H = 0.93 Å (aromatic) or 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(N,Caromatic).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
View of the crystal packing of the title compound. Intermolecular Hydrogen bonds are shown as dashed lines.

Crystal data

C13H12N2O2SF000 = 544
Mr = 260.31Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20621 reflections
a = 6.0976 (1) Åθ = 2.9–25.7º
b = 16.6689 (6) ŵ = 0.25 mm1
c = 13.1462 (4) ÅT = 294 K
β = 108.765 (2)ºNeedle, colourless
V = 1265.16 (6) Å30.50 × 0.08 × 0.07 mm
Z = 4

Data collection

Nonius KappaCCD diffractometerRint = 0.048
ω scansθmax = 25.7º
Absorption correction: Gaussian(Coppens et al., 1965)θmin = 2.9º
Tmin = 0.925, Tmax = 0.983h = −6→7
8242 measured reflectionsk = −19→20
2408 independent reflectionsl = −16→16
1594 reflections with I > 2σ(I)

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1015P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max < 0.001
wR(F2) = 0.130Δρmax = 0.26 e Å3
S = 1.03Δρmin = −0.30 e Å3
2408 reflectionsExtinction correction: none
164 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.22254 (12)0.09680 (4)0.04759 (5)0.0800 (3)
N20.4198 (3)0.09229 (10)0.26210 (13)0.0561 (4)
H20.4080.07120.31980.067*
O2−0.2979 (3)−0.06394 (9)0.17467 (12)0.0679 (4)
O10.1899 (3)0.01628 (10)0.37313 (12)0.0757 (5)
N10.0880 (3)0.01904 (10)0.18967 (13)0.0578 (5)
H1−0.0083−0.00160.13280.069*
C70.6105 (3)0.14441 (12)0.27881 (15)0.0528 (5)
C20.2552 (4)0.07008 (12)0.17262 (17)0.0556 (5)
C10.0568 (4)−0.00258 (13)0.28515 (17)0.0587 (5)
C120.7138 (4)0.16151 (13)0.20141 (17)0.0631 (6)
H120.65570.13890.13330.076*
C3−0.1472 (4)−0.05056 (13)0.27543 (17)0.0594 (5)
C80.7009 (4)0.17683 (13)0.38190 (17)0.0609 (6)
C90.8905 (4)0.22716 (14)0.40236 (19)0.0728 (6)
H90.95240.24940.47050.087*
C4−0.2232 (5)−0.08806 (15)0.3482 (2)0.0774 (7)
H4−0.1528−0.08810.42240.093*
C100.9905 (4)0.24531 (14)0.3252 (2)0.0737 (6)
H101.11660.27990.34090.088*
C110.9035 (4)0.21225 (14)0.2256 (2)0.0703 (6)
H110.97190.22380.17340.084*
C130.5994 (4)0.15856 (18)0.46916 (17)0.0835 (8)
H13A0.6710.19210.53030.125*
H13B0.62640.10320.48960.125*
H13C0.43570.16870.44350.125*
C6−0.4688 (4)−0.11084 (14)0.1874 (2)0.0769 (7)
H6−0.5959−0.12910.13160.092*
C5−0.4295 (5)−0.12709 (15)0.2904 (2)0.0831 (8)
H5−0.5214−0.15850.3190.1*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0983 (5)0.0930 (5)0.0458 (4)−0.0272 (4)0.0189 (3)0.0060 (3)
N20.0625 (10)0.0623 (10)0.0453 (10)−0.0051 (9)0.0199 (9)0.0046 (8)
O20.0709 (10)0.0737 (10)0.0649 (10)−0.0096 (8)0.0302 (8)−0.0045 (7)
O10.0788 (10)0.0981 (13)0.0498 (9)−0.0183 (9)0.0201 (8)0.0072 (8)
N10.0627 (10)0.0649 (11)0.0469 (9)−0.0066 (9)0.0192 (8)0.0012 (8)
C70.0572 (11)0.0511 (12)0.0512 (12)0.0023 (10)0.0190 (9)0.0062 (9)
C20.0664 (13)0.0525 (12)0.0508 (13)−0.0005 (10)0.0231 (11)0.0011 (9)
C10.0652 (13)0.0602 (13)0.0542 (13)0.0000 (11)0.0240 (11)0.0040 (10)
C120.0688 (13)0.0661 (14)0.0583 (13)0.0001 (11)0.0262 (11)0.0032 (10)
C30.0642 (13)0.0624 (14)0.0553 (13)0.0021 (11)0.0245 (11)0.0016 (10)
C80.0639 (13)0.0641 (14)0.0541 (13)−0.0005 (11)0.0184 (10)0.0032 (10)
C90.0739 (14)0.0746 (16)0.0652 (15)−0.0132 (12)0.0158 (12)−0.0037 (12)
C40.0832 (17)0.0879 (17)0.0700 (16)−0.0091 (14)0.0370 (14)0.0092 (13)
C100.0684 (14)0.0705 (16)0.0810 (17)−0.0085 (12)0.0223 (13)0.0066 (13)
C110.0675 (14)0.0750 (15)0.0765 (17)0.0015 (12)0.0343 (13)0.0164 (13)
C130.0874 (17)0.113 (2)0.0507 (13)−0.0239 (15)0.0226 (12)−0.0079 (13)
C60.0716 (15)0.0789 (17)0.0887 (19)−0.0192 (13)0.0376 (14)−0.0161 (14)
C50.0880 (18)0.0825 (18)0.094 (2)−0.0170 (14)0.0506 (16)0.0027 (15)

Geometric parameters (Å, °)

S1—C21.652 (2)C8—C91.383 (3)
N2—C21.330 (3)C8—C131.500 (3)
N2—C71.411 (2)C9—C101.375 (3)
N2—H20.86C9—H90.93
O2—C61.355 (3)C4—C51.403 (4)
O2—C31.366 (3)C4—H40.93
O1—C11.221 (2)C10—C111.361 (3)
N1—C11.377 (2)C10—H100.93
N1—C21.400 (3)C11—H110.93
N1—H10.86C13—H13A0.96
C7—C121.388 (3)C13—H13B0.96
C7—C81.397 (3)C13—H13C0.96
C1—C31.449 (3)C6—C51.325 (4)
C12—C111.385 (3)C6—H60.93
C12—H120.93C5—H50.93
C3—C41.344 (3)
C2—N2—C7131.21 (17)C10—C9—C8122.1 (2)
C2—N2—H2114.4C10—C9—H9118.9
C7—N2—H2114.4C8—C9—H9118.9
C6—O2—C3106.19 (18)C3—C4—C5106.5 (2)
C1—N1—C2128.76 (18)C3—C4—H4126.7
C1—N1—H1115.6C5—C4—H4126.7
C2—N1—H1115.6C11—C10—C9119.5 (2)
C12—C7—C8120.07 (19)C11—C10—H10120.2
C12—C7—N2123.93 (19)C9—C10—H10120.2
C8—C7—N2115.95 (17)C10—C11—C12120.4 (2)
N2—C2—N1114.13 (17)C10—C11—H11119.8
N2—C2—S1128.33 (16)C12—C11—H11119.8
N1—C2—S1117.52 (16)C8—C13—H13A109.5
O1—C1—N1123.5 (2)C8—C13—H13B109.5
O1—C1—C3121.03 (19)H13A—C13—H13B109.5
N1—C1—C3115.5 (2)C8—C13—H13C109.5
C11—C12—C7120.0 (2)H13A—C13—H13C109.5
C11—C12—H12120H13B—C13—H13C109.5
C7—C12—H12120C5—C6—O2110.5 (2)
C4—C3—O2109.6 (2)C5—C6—H6124.7
C4—C3—C1132.6 (2)O2—C6—H6124.7
O2—C3—C1117.80 (18)C6—C5—C4107.1 (2)
C9—C8—C7117.88 (19)C6—C5—H5126.4
C9—C8—C13120.0 (2)C4—C5—H5126.4
C7—C8—C13122.15 (19)
C2—N2—C7—C12−24.6 (3)N1—C1—C3—O2−5.5 (3)
C2—N2—C7—C8158.1 (2)C12—C7—C8—C91.5 (3)
C7—N2—C2—N1−177.53 (18)N2—C7—C8—C9178.90 (19)
C7—N2—C2—S10.8 (3)C12—C7—C8—C13−178.4 (2)
C1—N1—C2—N28.7 (3)N2—C7—C8—C13−1.0 (3)
C1—N1—C2—S1−169.87 (17)C7—C8—C9—C10−0.3 (3)
C2—N1—C1—O1−6.2 (4)C13—C8—C9—C10179.6 (2)
C2—N1—C1—C3174.14 (18)O2—C3—C4—C50.5 (3)
C8—C7—C12—C11−1.5 (3)C1—C3—C4—C5−178.3 (2)
N2—C7—C12—C11−178.73 (18)C8—C9—C10—C11−0.9 (4)
C6—O2—C3—C4−0.1 (2)C9—C10—C11—C120.9 (4)
C6—O2—C3—C1178.91 (18)C7—C12—C11—C100.3 (3)
O1—C1—C3—C4−6.4 (4)C3—O2—C6—C5−0.3 (3)
N1—C1—C3—C4173.3 (2)O2—C6—C5—C40.6 (3)
O1—C1—C3—O2174.84 (19)C3—C4—C5—C6−0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.262.682 (3)110
N1—H1···S1i0.862.803.639 (2)165
N2—H2···O10.861.922.649 (2)141

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2623).

References

  • Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  • Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  • Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.
  • Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography