PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1410.
Published online 2008 July 5. doi:  10.1107/S1600536808019983
PMCID: PMC2962045

2,2,2-Trimethyl-N-(phenyl­sulfon­yl)­acetamide

Abstract

The N—H and C=O bonds of the SO2—NH—CO group in the title compound, C11H15NO3S, are anti to each other. The asymmetric unit contains two independent mol­ecules. The benzene rings form dihedral angles of 83.19 (8) and 76.01 (10)° with the mean planes of the C2NOS fragments. The mol­ecules are linked into chains parallel to the b axis by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda, Nayak et al. (2007 [triangle]); Gowda, Foro & Fuess (2007 [triangle]); Gowda, Kožíšek et al. (2007 [triangle]); Gowda, Svoboda et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1410-scheme1.jpg

Experimental

Crystal data

  • C11H15NO3S
  • M r = 241.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1410-efi1.jpg
  • a = 12.3045 (9) Å
  • b = 11.3016 (7) Å
  • c = 18.466 (1) Å
  • β = 103.117 (6)°
  • V = 2500.9 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 299 (2) K
  • 0.50 × 0.48 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.885, T max = 0.906
  • 15589 measured reflections
  • 4985 independent reflections
  • 3639 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.167
  • S = 1.16
  • 4985 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019983/rz2222sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019983/rz2222Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO group in NPSTMAA are anti to each other (Fig. 1). The asymmetric unit of the structure contains two molecules. The bond parameters in NPSTMAA are similar to those in N-(aryl)-2,2,2-trimethylacetamides (Gowda, Foro & Fuess, 2007; Gowda, Kožíšek et al., 2007; Gowda, Svoboda et al., 2007) and benzenesulfonamide (Gowda, Nayak et al., 2007). The benzene rings form dihedral angles of 83.19 (8) and 76.01 (10)° with the mean planes of the C2NOS fragments. A packing diagram of NPSTMAA molecules showing the formation of molecular chains parallel to the b axis through N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing benzenesulfonamide (0.10 mol) in excess pivalyl chloride (0.20 mol) for about an hour on a water bath. The reaction mixture was cooled and poured into ice-cold water. The resulting solid was separated, washed thoroughly with water and dissolved in a warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound suitable for X-ray diffraction studies were obtained by slow evaporation of an ethanol solution.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
The molecular packing of the title compound viewed along tha a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H15NO3SF000 = 1024
Mr = 241.30Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7426 reflections
a = 12.3045 (9) Åθ = 2.5–28.0º
b = 11.3016 (7) ŵ = 0.25 mm1
c = 18.466 (1) ÅT = 299 (2) K
β = 103.117 (6)ºPrism, colourless
V = 2500.9 (3) Å30.50 × 0.48 × 0.40 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector4985 independent reflections
Radiation source: fine-focus sealed tube3639 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 2.5º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −15→15
Tmin = 0.885, Tmax = 0.906k = −13→13
15589 measured reflectionsl = −21→22

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0676P)2 + 1.8991P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.167(Δ/σ)max = 0.002
S = 1.16Δρmax = 0.44 e Å3
4985 reflectionsΔρmin = −0.40 e Å3
290 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.100 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6562 (2)0.7079 (2)0.00179 (14)0.0448 (6)
C20.7702 (3)0.7222 (3)0.00846 (18)0.0580 (8)
H20.80430.79480.02230.070*
C30.8318 (3)0.6267 (3)−0.0058 (2)0.0693 (9)
H30.90820.6350−0.00150.083*
C40.7817 (3)0.5195 (3)−0.02624 (19)0.0679 (9)
H40.82440.4554−0.03500.081*
C50.6688 (3)0.5067 (3)−0.03380 (18)0.0624 (8)
H50.63500.4344−0.04860.075*
C60.6053 (3)0.6003 (3)−0.01956 (16)0.0515 (7)
H60.52890.5913−0.02420.062*
C70.5886 (2)0.7797 (2)0.15920 (15)0.0440 (6)
C80.6204 (3)0.8245 (3)0.23927 (15)0.0541 (7)
C90.5795 (4)0.7357 (4)0.2886 (2)0.0894 (13)
H9A0.61380.66030.28490.107*
H9B0.50000.72810.27300.107*
H9C0.59900.76250.33930.107*
C100.5687 (3)0.9456 (3)0.24601 (19)0.0713 (9)
H10A0.48890.93990.23070.086*
H10B0.59531.00130.21480.086*
H10C0.58920.97180.29670.086*
C110.7482 (3)0.8339 (4)0.2623 (2)0.0856 (12)
H11A0.77400.88740.22950.103*
H11B0.78050.75720.25960.103*
H11C0.76980.86300.31240.103*
N10.6084 (2)0.8572 (2)0.10554 (12)0.0499 (6)
H1N0.64010.92360.12000.060*
O10.46068 (17)0.79593 (19)−0.00518 (12)0.0590 (6)
O20.6126 (2)0.93176 (18)−0.01691 (11)0.0613 (6)
O30.54943 (18)0.68328 (17)0.14170 (11)0.0541 (5)
S10.57470 (6)0.82976 (6)0.01579 (4)0.0467 (2)
C120.8299 (2)0.2840 (2)0.14176 (14)0.0476 (6)
C130.9320 (3)0.3399 (3)0.15839 (18)0.0678 (9)
H130.99720.29910.15720.081*
C140.9346 (6)0.4580 (5)0.1769 (2)0.1085 (19)
H141.00280.49730.18880.130*
C150.8403 (8)0.5176 (4)0.1781 (3)0.120 (2)
H150.84420.59750.19050.144*
C160.7397 (5)0.4626 (4)0.1615 (2)0.0985 (16)
H160.67520.50510.16250.118*
C170.7324 (3)0.3431 (3)0.14311 (17)0.0657 (9)
H170.66400.30420.13210.079*
C180.8663 (2)0.1631 (3)−0.01406 (16)0.0531 (7)
C190.8292 (3)0.1401 (3)−0.09727 (16)0.0547 (7)
C200.9144 (4)0.1923 (4)−0.1351 (2)0.0894 (13)
H20A0.98560.1557−0.11600.107*
H20B0.92020.2759−0.12580.107*
H20C0.89180.1785−0.18770.107*
C210.8234 (4)0.0072 (4)−0.1109 (2)0.0822 (11)
H21A0.7707−0.0273−0.08590.099*
H21B0.8957−0.0271−0.09210.099*
H21C0.8002−0.0079−0.16330.099*
C220.7149 (4)0.1925 (5)−0.1277 (2)0.0991 (15)
H22A0.71750.2764−0.11930.119*
H22B0.66220.1573−0.10300.119*
H22C0.69250.1771−0.18010.119*
N20.7948 (2)0.1235 (2)0.02886 (12)0.0541 (6)
H2N0.73230.09250.00670.065*
O40.7261 (2)0.0845 (2)0.13953 (12)0.0719 (7)
O50.9285 (2)0.0813 (2)0.15009 (14)0.0811 (8)
O60.9519 (2)0.2109 (3)0.01479 (13)0.0823 (8)
S20.82357 (6)0.13285 (7)0.12026 (4)0.0512 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0553 (15)0.0441 (14)0.0354 (12)−0.0074 (12)0.0111 (11)−0.0005 (10)
C20.0561 (17)0.0525 (17)0.0625 (18)−0.0116 (14)0.0070 (14)0.0000 (14)
C30.0572 (19)0.076 (2)0.077 (2)0.0004 (17)0.0198 (16)0.0044 (18)
C40.081 (2)0.061 (2)0.068 (2)0.0118 (17)0.0315 (17)−0.0010 (16)
C50.082 (2)0.0481 (17)0.0640 (19)−0.0070 (15)0.0306 (16)−0.0093 (14)
C60.0598 (17)0.0494 (16)0.0481 (15)−0.0122 (13)0.0184 (12)−0.0038 (12)
C70.0478 (14)0.0402 (14)0.0453 (14)0.0023 (11)0.0132 (11)−0.0035 (11)
C80.0719 (19)0.0524 (16)0.0370 (14)−0.0026 (14)0.0103 (13)−0.0038 (12)
C90.144 (4)0.079 (3)0.0471 (18)−0.019 (3)0.027 (2)0.0023 (17)
C100.092 (3)0.067 (2)0.0593 (19)0.0040 (19)0.0272 (18)−0.0160 (16)
C110.082 (3)0.099 (3)0.064 (2)0.008 (2)−0.0068 (19)−0.011 (2)
N10.0684 (15)0.0436 (12)0.0376 (11)−0.0118 (11)0.0119 (10)−0.0049 (9)
O10.0524 (12)0.0616 (13)0.0582 (12)0.0000 (10)0.0025 (9)−0.0063 (10)
O20.0892 (16)0.0466 (11)0.0499 (11)−0.0053 (11)0.0195 (10)0.0045 (9)
O30.0697 (13)0.0420 (11)0.0520 (11)−0.0059 (9)0.0165 (9)−0.0025 (8)
S10.0585 (4)0.0419 (4)0.0387 (4)−0.0035 (3)0.0088 (3)−0.0003 (3)
C120.0596 (17)0.0470 (15)0.0345 (13)−0.0036 (12)0.0071 (11)−0.0018 (11)
C130.077 (2)0.075 (2)0.0491 (17)−0.0233 (18)0.0108 (15)−0.0077 (15)
C140.172 (5)0.084 (3)0.068 (3)−0.066 (4)0.023 (3)−0.021 (2)
C150.244 (8)0.054 (3)0.064 (3)−0.014 (4)0.039 (4)−0.011 (2)
C160.164 (5)0.078 (3)0.057 (2)0.056 (3)0.031 (3)0.005 (2)
C170.077 (2)0.072 (2)0.0467 (16)0.0168 (17)0.0098 (15)0.0002 (15)
C180.0506 (16)0.0640 (18)0.0474 (16)−0.0065 (14)0.0164 (12)−0.0095 (13)
C190.0563 (17)0.0657 (19)0.0445 (15)−0.0009 (14)0.0164 (12)−0.0089 (13)
C200.111 (3)0.112 (3)0.053 (2)−0.033 (3)0.036 (2)−0.012 (2)
C210.114 (3)0.074 (2)0.068 (2)−0.010 (2)0.040 (2)−0.0204 (18)
C220.085 (3)0.152 (4)0.056 (2)0.037 (3)0.0070 (19)−0.008 (2)
N20.0570 (14)0.0692 (16)0.0382 (12)−0.0159 (12)0.0152 (10)−0.0152 (11)
O40.0986 (18)0.0684 (15)0.0565 (13)−0.0316 (13)0.0338 (12)−0.0093 (11)
O50.0916 (18)0.0805 (17)0.0672 (15)0.0328 (14)0.0099 (13)0.0079 (13)
O60.0625 (14)0.132 (2)0.0541 (13)−0.0361 (15)0.0165 (11)−0.0164 (14)
S20.0652 (5)0.0477 (4)0.0410 (4)−0.0019 (3)0.0130 (3)−0.0016 (3)

Geometric parameters (Å, °)

C1—C61.384 (4)C12—C131.377 (4)
C1—C21.389 (4)C12—C171.378 (4)
C1—S11.757 (3)C12—S21.752 (3)
C2—C31.378 (5)C13—C141.376 (6)
C2—H20.9300C13—H130.9300
C3—C41.373 (5)C14—C151.347 (8)
C3—H30.9300C14—H140.9300
C4—C51.372 (5)C15—C161.357 (8)
C4—H40.9300C15—H150.9300
C5—C61.375 (4)C16—C171.391 (6)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—O31.206 (3)C18—O61.195 (4)
C7—N11.384 (3)C18—N21.386 (4)
C7—C81.527 (4)C18—C191.523 (4)
C8—C91.516 (5)C19—C201.506 (5)
C8—C101.526 (5)C19—C221.512 (5)
C8—C111.536 (5)C19—C211.522 (5)
C9—H9A0.9600C20—H20A0.9600
C9—H9B0.9600C20—H20B0.9600
C9—H9C0.9600C20—H20C0.9600
C10—H10A0.9600C21—H21A0.9600
C10—H10B0.9600C21—H21B0.9600
C10—H10C0.9600C21—H21C0.9600
C11—H11A0.9600C22—H22A0.9600
C11—H11B0.9600C22—H22B0.9600
C11—H11C0.9600C22—H22C0.9600
N1—S11.644 (2)N2—S21.647 (2)
N1—H1N0.8600N2—H2N0.8600
O1—S11.421 (2)O4—S21.434 (2)
O2—S11.428 (2)O5—S21.410 (2)
C6—C1—C2120.7 (3)C13—C12—C17121.9 (3)
C6—C1—S1119.6 (2)C13—C12—S2119.3 (3)
C2—C1—S1119.6 (2)C17—C12—S2118.8 (2)
C3—C2—C1118.7 (3)C14—C13—C12118.0 (4)
C3—C2—H2120.7C14—C13—H13121.0
C1—C2—H2120.7C12—C13—H13121.0
C4—C3—C2120.8 (3)C15—C14—C13121.2 (5)
C4—C3—H3119.6C15—C14—H14119.4
C2—C3—H3119.6C13—C14—H14119.4
C5—C4—C3120.1 (3)C14—C15—C16120.9 (4)
C5—C4—H4119.9C14—C15—H15119.6
C3—C4—H4119.9C16—C15—H15119.6
C4—C5—C6120.4 (3)C15—C16—C17120.3 (5)
C4—C5—H5119.8C15—C16—H16119.9
C6—C5—H5119.8C17—C16—H16119.9
C5—C6—C1119.4 (3)C12—C17—C16117.8 (4)
C5—C6—H6120.3C12—C17—H17121.1
C1—C6—H6120.3C16—C17—H17121.1
O3—C7—N1120.3 (2)O6—C18—N2120.0 (3)
O3—C7—C8123.9 (3)O6—C18—C19124.0 (3)
N1—C7—C8115.8 (2)N2—C18—C19116.0 (2)
C9—C8—C10110.1 (3)C20—C19—C22111.2 (4)
C9—C8—C7108.4 (3)C20—C19—C21108.7 (3)
C10—C8—C7110.9 (2)C22—C19—C21108.7 (3)
C9—C8—C11109.7 (3)C20—C19—C18108.7 (3)
C10—C8—C11109.6 (3)C22—C19—C18110.4 (3)
C7—C8—C11108.2 (3)C21—C19—C18109.1 (3)
C8—C9—H9A109.5C19—C20—H20A109.5
C8—C9—H9B109.5C19—C20—H20B109.5
H9A—C9—H9B109.5H20A—C20—H20B109.5
C8—C9—H9C109.5C19—C20—H20C109.5
H9A—C9—H9C109.5H20A—C20—H20C109.5
H9B—C9—H9C109.5H20B—C20—H20C109.5
C8—C10—H10A109.5C19—C21—H21A109.5
C8—C10—H10B109.5C19—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
C8—C10—H10C109.5C19—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
C8—C11—H11A109.5C19—C22—H22A109.5
C8—C11—H11B109.5C19—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C8—C11—H11C109.5C19—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
C7—N1—S1123.86 (19)C18—N2—S2123.3 (2)
C7—N1—H1N118.1C18—N2—H2N118.4
S1—N1—H1N118.1S2—N2—H2N118.4
O1—S1—O2119.96 (14)O5—S2—O4119.27 (17)
O1—S1—N1109.45 (13)O5—S2—N2109.80 (14)
O2—S1—N1104.02 (12)O4—S2—N2103.43 (13)
O1—S1—C1108.08 (13)O5—S2—C12108.93 (16)
O2—S1—C1108.55 (13)O4—S2—C12108.21 (14)
N1—S1—C1105.93 (12)N2—S2—C12106.43 (13)
C6—C1—C2—C3−0.7 (4)C17—C12—C13—C140.2 (5)
S1—C1—C2—C3−177.3 (3)S2—C12—C13—C14−178.4 (3)
C1—C2—C3—C40.1 (5)C12—C13—C14—C15−0.6 (6)
C2—C3—C4—C50.9 (5)C13—C14—C15—C160.4 (7)
C3—C4—C5—C6−1.3 (5)C14—C15—C16—C170.2 (7)
C4—C5—C6—C10.6 (5)C13—C12—C17—C160.4 (5)
C2—C1—C6—C50.4 (4)S2—C12—C17—C16179.0 (3)
S1—C1—C6—C5177.0 (2)C15—C16—C17—C12−0.6 (6)
O3—C7—C8—C9−7.8 (4)O6—C18—C19—C20−2.7 (5)
N1—C7—C8—C9172.8 (3)N2—C18—C19—C20178.1 (3)
O3—C7—C8—C10−128.7 (3)O6—C18—C19—C22−124.9 (4)
N1—C7—C8—C1051.9 (4)N2—C18—C19—C2256.0 (4)
O3—C7—C8—C11111.1 (3)O6—C18—C19—C21115.7 (4)
N1—C7—C8—C11−68.3 (3)N2—C18—C19—C21−63.4 (4)
O3—C7—N1—S13.8 (4)O6—C18—N2—S2−2.9 (5)
C8—C7—N1—S1−176.8 (2)C19—C18—N2—S2176.2 (2)
C7—N1—S1—O151.8 (3)C18—N2—S2—O5−53.0 (3)
C7—N1—S1—O2−178.8 (2)C18—N2—S2—O4178.7 (3)
C7—N1—S1—C1−64.5 (3)C18—N2—S2—C1264.7 (3)
C6—C1—S1—O1−5.4 (3)C13—C12—S2—O522.0 (3)
C2—C1—S1—O1171.3 (2)C17—C12—S2—O5−156.6 (2)
C6—C1—S1—O2−136.9 (2)C13—C12—S2—O4153.0 (2)
C2—C1—S1—O239.7 (3)C17—C12—S2—O4−25.5 (3)
C6—C1—S1—N1111.9 (2)C13—C12—S2—N2−96.4 (2)
C2—C1—S1—N1−71.5 (3)C17—C12—S2—N285.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.862.092.946 (3)171
N2—H2N···O2ii0.862.323.094 (3)151

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2222).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2329–o2330.
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2327–o2328.
  • Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.
  • Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography