PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1407.
Published online 2008 July 5. doi:  10.1107/S1600536808019922
PMCID: PMC2962040

N-(2-Chloro­benzo­yl)-N′-(3-pyrid­yl)thio­urea

Abstract

In the mol­ecule of the title compound, C13H10ClN3OS, the dihedral angles between the plane through the thio­urea group and the pyridine and benzene rings are 53.08 (3) and 87.12 (3)°, respectively. The mol­ecules are linked by inter­molecular N—H(...)N hydrogen-bonding inter­actions to form a supra­molecular chain structure along the a axis. An intra­mol­ecular N—H(...)O hydrogen bond is also present.

Related literature

For related literature, see: Campo et al. (2002 [triangle]); Dong et al. (2006 [triangle], 2008 [triangle]); Foss et al. (2004 [triangle]); Guillon et al. (1996 [triangle]); Koch (2001 [triangle]); Krepps et al. (2001 [triangle]); Su et al. (2004 [triangle], 2006 [triangle]); Teoh et al. (1999 [triangle]); Venkatachalam et al. (2004 [triangle]); West et al. (2000 [triangle]); Xian et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1407-scheme1.jpg

Experimental

Crystal data

  • C13H10ClN3OS
  • M r = 291.75
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1407-efi1.jpg
  • a = 8.421 (3) Å
  • b = 9.282 (4) Å
  • c = 10.512 (4) Å
  • α = 98.336 (4)°
  • β = 110.797 (4)°
  • γ = 112.532 (4)°
  • V = 670.9 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 298 (2) K
  • 0.32 × 0.11 × 0.07 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.874, T max = 0.972
  • 3504 measured reflections
  • 2319 independent reflections
  • 1734 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.100
  • S = 1.02
  • 2319 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019922/rz2227sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019922/rz2227Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the ’Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

supplementary crystallographic information

Comment

Thiourea and its substituted derivatives have attracted much attention because of their unique properties, such as the strong coordination ability (Su et al., 2004; Su et al., 2006; Xian et al., 2004; West et al., 2000). They are used as selective analytical reagents, especially for the determination of transition metals in complex interfering matrices (Koch, 2001; Foss et al., 2004). It has been shown that the redox properties of thiourea are markedly influenced by electronic factors (Guillon et al., 1996), and the biological activity of thiourea derivatives has also been reported in the literature (Teoh et al., 1999; Campo et al., 2002). However, the study of S···H interactions may have fundamental importance in biochemical research due to the fact that living systems contain several important sulfur-containing molecules, such as the aminoacids cysteine and methionine (Krepps et al., 2001). Related to the biological relevance of S···H interactions, Uckum and coworkers have recently reported a structural study of a series of thiourea compounds (Venkatachalam et al., 2004). Here we report the synthesis and crystal structure of a new benzoylthiourea derivative, N-(o-chloro)benzoyl-N'-(3-pyridyl)thiourea. The molecular structure of the title compound is shown in Figure 1.

The dihedral angles formed by the plane through the thiourea group and the pyridine and benzene rings of 53.08 (3) and 87.12 (3)°, respectively. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bonding interaction (Table 1), forming a planar six-membered ring. In contrast to other thiourea compounds, the H1···S1 separation is 2.662 (2) Å, indicating that S1 is not involved in hydrogen bonding. This situation is similar to that found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). The C=O bond length of 1.217 (3) Å is just significantly longer than the average C=O bond length (1.200 Å) due to the intramolecular hydrogen bond. In the crystal structure, molecules are linked by intermolecular by N—H···N hydrogen interactions to form supramolecular chains along the a axis.

Experimental

N-(o-Chloro)benzoyl-N'-(3-pyridyl)thiourea was synthesized according the method reported in the literature (Dong et al., 2008). o-Chlorobenzoyl chloride (3.61 g, 0.02 mol) was reacted with ammonium thiocyanate (2.28 g, 0.03 mol) in CH2Cl2 (25 ml) under solid-liquid phase transfer catalysis, using 3% polyethylene glycol-400 (0.36 g) as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with 3-aminopyridine (1.72 g, 0.02 mol). The title compound precipitated immediately. The product was filtered, washed with water and CH2Cl2 and dried. Colourless needle-shaped single crystals were obtained by slow evaporation of an acetone solution after several weeks at room temperature. M.p. 442 - 444 K. Anal. Calcd. for C13H10ClN3OS: C, 53.52; H, 3.45; N, 14.40. Found: C, 53.28; H, 3.48; N, 14.15%.

Refinement

H atoms were treated as riding atoms with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.
The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
The supramolecular chain structure of the title compound constructed by intermolecular N—H···N hydrogen bonding interactions (dotted lines).

Crystal data

C13H10ClN3OSZ = 2
Mr = 291.75F000 = 300
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.421 (3) ÅCell parameters from 1514 reflections
b = 9.282 (4) Åθ = 2.5–26.6º
c = 10.512 (4) ŵ = 0.43 mm1
α = 98.336 (4)ºT = 298 (2) K
β = 110.797 (4)ºNeedle, colourless
γ = 112.532 (4)º0.32 × 0.11 × 0.07 mm
V = 670.9 (5) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2319 independent reflections
Radiation source: fine-focus sealed tube1734 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→9
Tmin = 0.874, Tmax = 0.972k = −11→9
3504 measured reflectionsl = −12→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.044P)2 + 0.2146P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2319 reflectionsΔρmax = 0.20 e Å3
172 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.41414 (14)0.64074 (11)0.50918 (8)0.0781 (3)
N10.4306 (3)0.5361 (2)0.1841 (2)0.0397 (5)
H10.30770.49660.14770.048*
N20.6871 (3)0.4903 (2)0.2029 (2)0.0416 (5)
H20.75610.59270.25480.050*
N31.0366 (3)0.3871 (2)0.1394 (2)0.0481 (5)
O10.7112 (3)0.7734 (2)0.3311 (2)0.0630 (5)
S10.33789 (9)0.24252 (8)0.02568 (7)0.0500 (2)
C10.4967 (3)0.4294 (3)0.1432 (2)0.0370 (5)
C20.5364 (4)0.6956 (3)0.2748 (3)0.0422 (6)
C30.4139 (3)0.7708 (3)0.2962 (2)0.0400 (5)
C40.3540 (4)0.7557 (3)0.4027 (3)0.0476 (6)
C50.2449 (4)0.8281 (3)0.4233 (3)0.0560 (7)
H50.20620.81770.49550.067*
C60.1944 (4)0.9154 (3)0.3359 (3)0.0613 (8)
H60.12110.96440.34900.074*
C70.2513 (4)0.9307 (3)0.2296 (3)0.0593 (7)
H70.21570.98950.17050.071*
C80.3611 (4)0.8595 (3)0.2093 (3)0.0495 (6)
H80.39970.87110.13710.059*
C90.9299 (3)0.4610 (3)0.1477 (2)0.0411 (6)
H90.95510.55860.12590.049*
C100.7848 (3)0.3985 (3)0.1872 (2)0.0380 (5)
C110.7442 (4)0.2524 (3)0.2178 (3)0.0481 (6)
H110.64560.20700.24360.058*
C120.8523 (4)0.1757 (3)0.2093 (3)0.0542 (7)
H120.82910.07760.23000.065*
C130.9953 (4)0.2463 (3)0.1697 (3)0.0537 (7)
H131.06740.19300.16360.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1271 (8)0.0975 (6)0.0704 (5)0.0861 (6)0.0617 (5)0.0496 (5)
N10.0341 (10)0.0395 (11)0.0488 (11)0.0192 (9)0.0225 (9)0.0076 (9)
N20.0372 (11)0.0368 (10)0.0569 (12)0.0195 (9)0.0271 (10)0.0101 (9)
N30.0439 (12)0.0496 (12)0.0650 (14)0.0268 (10)0.0339 (11)0.0184 (11)
O10.0406 (11)0.0539 (11)0.0758 (13)0.0192 (9)0.0209 (10)−0.0069 (10)
S10.0487 (4)0.0416 (4)0.0571 (4)0.0206 (3)0.0259 (3)0.0051 (3)
C10.0437 (14)0.0408 (13)0.0405 (13)0.0244 (11)0.0273 (11)0.0160 (10)
C20.0426 (15)0.0419 (13)0.0447 (14)0.0219 (12)0.0227 (12)0.0074 (11)
C30.0408 (13)0.0356 (12)0.0459 (14)0.0206 (11)0.0213 (11)0.0071 (11)
C40.0624 (17)0.0491 (14)0.0487 (14)0.0376 (13)0.0297 (13)0.0177 (12)
C50.0712 (19)0.0653 (17)0.0544 (16)0.0448 (16)0.0386 (15)0.0170 (14)
C60.0686 (19)0.0596 (17)0.0696 (19)0.0464 (16)0.0307 (16)0.0129 (15)
C70.0712 (19)0.0516 (16)0.0672 (18)0.0404 (15)0.0291 (16)0.0236 (14)
C80.0577 (16)0.0438 (14)0.0540 (15)0.0264 (13)0.0293 (13)0.0168 (12)
C90.0374 (13)0.0396 (13)0.0515 (14)0.0198 (11)0.0238 (12)0.0142 (11)
C100.0388 (13)0.0410 (13)0.0432 (13)0.0231 (11)0.0236 (11)0.0120 (10)
C110.0507 (15)0.0512 (15)0.0599 (16)0.0269 (13)0.0380 (13)0.0222 (13)
C120.0630 (17)0.0487 (15)0.0750 (18)0.0351 (14)0.0422 (15)0.0300 (14)
C130.0556 (16)0.0537 (16)0.0732 (18)0.0373 (14)0.0378 (15)0.0220 (14)

Geometric parameters (Å, °)

Cl1—C41.734 (2)C5—C61.372 (4)
N1—C21.368 (3)C5—H50.9300
N1—C11.394 (3)C6—C71.369 (4)
N1—H10.8600C6—H60.9300
N2—C11.331 (3)C7—C81.380 (4)
N2—C101.422 (3)C7—H70.9300
N2—H20.8600C8—H80.9300
N3—C131.335 (3)C9—C101.375 (3)
N3—C91.340 (3)C9—H90.9300
O1—C21.217 (3)C10—C111.381 (3)
S1—C11.659 (2)C11—C121.371 (3)
C2—C31.508 (3)C11—H110.9300
C3—C41.385 (3)C12—C131.373 (3)
C3—C81.386 (3)C12—H120.9300
C4—C51.384 (3)C13—H130.9300
C2—N1—C1128.3 (2)C7—C6—H6119.8
C2—N1—H1115.9C5—C6—H6119.8
C1—N1—H1115.9C6—C7—C8120.5 (2)
C1—N2—C10124.83 (19)C6—C7—H7119.7
C1—N2—H2117.6C8—C7—H7119.7
C10—N2—H2117.6C7—C8—C3120.1 (2)
C13—N3—C9117.2 (2)C7—C8—H8119.9
N2—C1—N1115.4 (2)C3—C8—H8119.9
N2—C1—S1125.54 (17)N3—C9—C10122.6 (2)
N1—C1—S1119.02 (17)N3—C9—H9118.7
O1—C2—N1124.8 (2)C10—C9—H9118.7
O1—C2—C3122.1 (2)C9—C10—C11119.2 (2)
N1—C2—C3113.1 (2)C9—C10—N2119.10 (19)
C4—C3—C8118.6 (2)C11—C10—N2121.6 (2)
C4—C3—C2121.6 (2)C12—C11—C10118.6 (2)
C8—C3—C2119.8 (2)C12—C11—H11120.7
C5—C4—C3121.1 (2)C10—C11—H11120.7
C5—C4—Cl1119.9 (2)C11—C12—C13118.8 (2)
C3—C4—Cl1118.97 (18)C11—C12—H12120.6
C6—C5—C4119.2 (2)C13—C12—H12120.6
C6—C5—H5120.4N3—C13—C12123.6 (2)
C4—C5—H5120.4N3—C13—H13118.2
C7—C6—C5120.4 (2)C12—C13—H13118.2
C10—N2—C1—N1173.77 (19)C4—C5—C6—C70.0 (4)
C10—N2—C1—S1−7.1 (3)C5—C6—C7—C8−0.4 (4)
C2—N1—C1—N21.6 (3)C6—C7—C8—C30.4 (4)
C2—N1—C1—S1−177.58 (18)C4—C3—C8—C70.0 (4)
C1—N1—C2—O13.2 (4)C2—C3—C8—C7−179.1 (2)
C1—N1—C2—C3−178.6 (2)C13—N3—C9—C100.8 (4)
O1—C2—C3—C4−93.6 (3)N3—C9—C10—C11−1.0 (4)
N1—C2—C3—C488.1 (3)N3—C9—C10—N2175.7 (2)
O1—C2—C3—C885.4 (3)C1—N2—C10—C9129.9 (2)
N1—C2—C3—C8−92.8 (3)C1—N2—C10—C11−53.4 (3)
C8—C3—C4—C5−0.4 (4)C9—C10—C11—C120.8 (4)
C2—C3—C4—C5178.7 (2)N2—C10—C11—C12−175.8 (2)
C8—C3—C4—Cl1178.40 (18)C10—C11—C12—C13−0.5 (4)
C2—C3—C4—Cl1−2.5 (3)C9—N3—C13—C12−0.5 (4)
C3—C4—C5—C60.4 (4)C11—C12—C13—N30.4 (4)
Cl1—C4—C5—C6−178.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.982.671 (3)137
N1—H1···N3i0.862.082.886 (4)157

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2227).

References

  • Campo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem.89, 74–82. [PubMed]
  • Dong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008). Phosphorus Sulfur Silicon, 183, 1181–1187.
  • Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.
  • Foss, O., Husebye, S., Törnroos, K. W. & Fanwick, P. E. (2004). Polyhedron, 23, 3021–3032.
  • Guillon, E., Mohamadou, G. & Déchamps-Olivier, I. (1996). Polyhedron, 15, 947–952.
  • Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  • Krepps, M. K., Parkin, S. & Atwood, D. A. (2001). Cryst. Growth Des.1, 291–297.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Su, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750.
  • Su, B.-Q., Xian, L., Song, H.-B. & Sheng, L. (2004). Acta Cryst. C60, m661–m662. [PubMed]
  • Teoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem.580, 17–21.
  • Venkatachalam, T. K., Sudbeck, E. & Uckun, F. M. (2004). J. Mol. Struct.687, 45–51.
  • West, D. X., Castiñeiras, A. & Bermejo, E. (2000). J. Mol. Struct.520, 103–106.
  • Xian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem.57, 453–457.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography