PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1405.
Published online 2008 July 5. doi:  10.1107/S160053680801920X
PMCID: PMC2962038

1,1′-[(Hexane-1,6-diyldi­oxy)bis­(nitrilo­methyl­idyne)]dinaphthalene

Abstract

The title compound, C28H28N2O2, was synthesized by condensation of 1-naphthaldehyde with 1,6-bis­(amino­oxy)hexane in ethanol. The mol­ecule is disposed about a crystallographic centre of symmetry. In the crystal structure, mol­ecules are linked through strong inter­molecular π–π stacking inter­actions [interplana distance = 2.986 (2) Å], forming a three-dimensional network.

Related literature

For related literature, see: Akine et al. (2006 [triangle]); Dong et al. (2007 [triangle]); Herzfeld & Nagy (1999 [triangle]); Shi et al. (2007 [triangle]); You et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1405-scheme1.jpg

Experimental

Crystal data

  • C28H28N2O2
  • M r = 424.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1405-efi1.jpg
  • a = 9.2925 (16) Å
  • b = 6.3938 (12) Å
  • c = 19.723 (2) Å
  • β = 96.489 (2)°
  • V = 1164.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.47 × 0.42 × 0.23 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.965, T max = 0.983
  • 5470 measured reflections
  • 2050 independent reflections
  • 1047 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.154
  • S = 1.07
  • 2050 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801920X/hg2416sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801920X/hg2416Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff-base compounds containing imine groups have been used as modulators of structural and electronic properties of transition matal centres in modern coordination chemistry (You, et al., 2004). The diversity in the coordination environment and structures of transition metal complexes mainly depend on the type of Schiff-base ligands (Herzfeld, et al., 1999). In this research, we report on the synthesis and crystal structure of (I) with the aim of confirming its structural properties, and gaining further insight into its coordinating abilities toward various transition metal ions.

The crystal structure of (I) consists of discrete molecules disposed about a crystallographic centre of symmetry. The six carbon atoms in the (—CH=N—O—(CH2)6—O—N=CH—) bridge deviate slightly from the mean plane, with C1, C2 and C3 above by 0.04, 0.04 and 0.08 Å, and C1A, C2A and C3A below by 0.04, 0.04 and 0.08 Å (symmetry code A: -x + 1, -y, -z), respectively. The planes of the two naphthane rings in (I) are parallel with a separation distance of 2.163 (2) Å. In the crystal structure, molecules are linked through strong intermolecular π–π stacking interactions (Inter-molecular plane-to-plane distance, 2.986 (2) Å) to form a three-dimensional network.

Experimental

1,1'-[Hexane-1,6-diyldioxybis(nitrilomethylidyne)]dinaphthalene was synthesized according to an analogous method reported earlier (Shi, et al., 2007; Akine, et al., 2006; Dong, et al., 2007). To an ethanol solution (5 ml) of 1-naphthaldehyde (644.1 mg, 4.00 mmol) was added an ethanol solution (5 ml) of 1, 6-bis(aminooxy)hexane (296.5 mg, 2.00 mmol). The mixed solution was stirred at 328 K for 5 h. When cooled to room temperature, the precipitate was filtered, and washed successively with ethanol and hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 637.4 mg of (I). Yield, 75.1%. mp. 348–349 K. Anal. Calc. for C28H28N2O2: C, 79.22; H, 6.65; N, 6.60. Found: C, 79.35; H, 6.75; N, 6.53.

Colorless block-shaped single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from an methanol solution of (I).

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.
The molecule structure of (I) with atom numbering (symmetry code A: -x + 1, -y, -z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
Crystal structure of (I) showing the formation of π–π interactions (Inter-molecular plane-to-plane distance, 2.986 (2) Å).

Crystal data

C28H28N2O2F000 = 452
Mr = 424.52Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1078 reflections
a = 9.2925 (16) Åθ = 2.2–22.9º
b = 6.3938 (12) ŵ = 0.08 mm1
c = 19.723 (2) ÅT = 298 (2) K
β = 96.489 (2)ºBlock-shaped, colorless
V = 1164.3 (3) Å30.47 × 0.42 × 0.23 mm
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2050 independent reflections
Radiation source: fine-focus sealed tube1047 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→10
Tmin = 0.965, Tmax = 0.983k = −7→3
5470 measured reflectionsl = −22→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.155  w = 1/[σ2(Fo2) + 0.4185P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2050 reflectionsΔρmax = 0.18 e Å3
145 parametersΔρmin = −0.12 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2373 (3)0.6843 (4)0.09525 (11)0.0619 (7)
O10.2359 (2)0.5082 (3)0.05242 (10)0.0696 (6)
C10.3666 (3)0.3957 (4)0.06716 (14)0.0599 (8)
H1A0.37490.34390.11370.072*
H1B0.44860.48610.06240.072*
C20.3651 (3)0.2176 (5)0.01842 (14)0.0608 (8)
H2A0.34920.2722−0.02770.073*
H2B0.28400.12720.02500.073*
C30.5006 (3)0.0891 (4)0.02526 (13)0.0633 (9)
H3A0.51560.03210.07110.076*
H3B0.58200.17980.01950.076*
C40.1146 (4)0.7770 (5)0.08649 (13)0.0580 (8)
H40.04230.71560.05650.070*
C50.0789 (3)0.9699 (5)0.11943 (13)0.0526 (7)
C6−0.0446 (3)1.0682 (5)0.09222 (15)0.0658 (9)
H6−0.10101.00400.05620.079*
C7−0.0904 (4)1.2583 (6)0.11549 (17)0.0755 (10)
H7−0.17451.32050.09470.091*
C8−0.0126 (4)1.3520 (5)0.16820 (17)0.0721 (10)
H8−0.04361.47920.18420.086*
C90.1160 (3)1.2596 (5)0.19969 (14)0.0562 (8)
C100.1637 (3)1.0647 (5)0.17612 (13)0.0498 (7)
C110.2900 (3)0.9759 (5)0.21026 (14)0.0661 (9)
H110.32310.84790.19590.079*
C120.3639 (4)1.0755 (7)0.26392 (17)0.0859 (11)
H120.44701.01420.28610.103*
C130.3182 (5)1.2668 (7)0.28634 (18)0.0911 (12)
H130.37131.33380.32280.109*
C140.1975 (4)1.3554 (6)0.25544 (18)0.0798 (11)
H140.16721.48320.27130.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0736 (19)0.0517 (16)0.0629 (16)−0.0071 (14)0.0189 (13)−0.0125 (13)
O10.0779 (15)0.0602 (14)0.0711 (13)0.0002 (12)0.0109 (11)−0.0154 (12)
C10.067 (2)0.0532 (19)0.0614 (18)−0.0088 (17)0.0143 (15)−0.0052 (16)
C20.071 (2)0.0524 (18)0.0598 (18)−0.0114 (17)0.0115 (15)−0.0068 (16)
C30.073 (2)0.056 (2)0.0618 (18)−0.0078 (18)0.0109 (16)−0.0047 (15)
C40.065 (2)0.057 (2)0.0525 (17)−0.0090 (18)0.0092 (15)−0.0024 (16)
C50.0578 (18)0.0535 (19)0.0489 (15)−0.0051 (16)0.0166 (14)0.0034 (15)
C60.062 (2)0.074 (2)0.0617 (19)−0.0002 (19)0.0080 (16)0.0071 (18)
C70.067 (2)0.080 (3)0.080 (2)0.011 (2)0.0131 (19)0.010 (2)
C80.079 (2)0.061 (2)0.083 (2)0.007 (2)0.039 (2)0.007 (2)
C90.062 (2)0.059 (2)0.0526 (17)−0.0102 (18)0.0249 (15)−0.0031 (16)
C100.0535 (18)0.0528 (19)0.0455 (15)−0.0091 (16)0.0160 (13)−0.0003 (14)
C110.068 (2)0.069 (2)0.0614 (18)0.0025 (18)0.0087 (16)−0.0055 (18)
C120.071 (2)0.116 (3)0.068 (2)0.001 (2)−0.0050 (18)−0.016 (2)
C130.087 (3)0.118 (4)0.069 (2)−0.025 (3)0.010 (2)−0.037 (2)
C140.086 (3)0.079 (3)0.080 (2)−0.014 (2)0.034 (2)−0.020 (2)

Geometric parameters (Å, °)

N1—C41.279 (3)C6—C71.383 (4)
N1—O11.407 (3)C6—H60.9300
O1—C11.413 (3)C7—C81.339 (4)
C1—C21.490 (4)C7—H70.9300
C1—H1A0.9700C8—C91.412 (4)
C1—H1B0.9700C8—H80.9300
C2—C31.497 (4)C9—C141.404 (4)
C2—H2A0.9700C9—C101.419 (4)
C2—H2B0.9700C10—C111.406 (4)
C3—C3i1.513 (5)C11—C121.354 (4)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—C131.383 (5)
C4—C51.450 (4)C12—H120.9300
C4—H40.9300C13—C141.340 (5)
C5—C61.364 (4)C13—H130.9300
C5—C101.428 (4)C14—H140.9300
C4—N1—O1110.0 (2)C5—C6—H6118.3
N1—O1—C1109.6 (2)C7—C6—H6118.3
O1—C1—C2108.2 (2)C8—C7—C6119.4 (3)
O1—C1—H1A110.1C8—C7—H7120.3
C2—C1—H1A110.1C6—C7—H7120.3
O1—C1—H1B110.1C7—C8—C9120.7 (3)
C2—C1—H1B110.1C7—C8—H8119.7
H1A—C1—H1B108.4C9—C8—H8119.7
C1—C2—C3114.5 (2)C14—C9—C8121.1 (3)
C1—C2—H2A108.6C14—C9—C10118.6 (3)
C3—C2—H2A108.6C8—C9—C10120.2 (3)
C1—C2—H2B108.6C11—C10—C9118.2 (3)
C3—C2—H2B108.6C11—C10—C5124.1 (3)
H2A—C2—H2B107.6C9—C10—C5117.7 (3)
C2—C3—C3i114.2 (3)C12—C11—C10120.5 (3)
C2—C3—H3A108.7C12—C11—H11119.8
C3i—C3—H3A108.7C10—C11—H11119.8
C2—C3—H3B108.7C11—C12—C13121.2 (3)
C3i—C3—H3B108.7C11—C12—H12119.4
H3A—C3—H3B107.6C13—C12—H12119.4
N1—C4—C5125.4 (3)C14—C13—C12120.0 (3)
N1—C4—H4117.3C14—C13—H13120.0
C5—C4—H4117.3C12—C13—H13120.0
C6—C5—C10118.5 (3)C13—C14—C9121.4 (3)
C6—C5—C4116.1 (3)C13—C14—H14119.3
C10—C5—C4125.3 (3)C9—C14—H14119.3
C5—C6—C7123.4 (3)
C4—N1—O1—C1−174.4 (2)C8—C9—C10—C11−178.2 (3)
N1—O1—C1—C2−176.9 (2)C14—C9—C10—C5179.9 (2)
O1—C1—C2—C3177.0 (2)C8—C9—C10—C51.1 (4)
C1—C2—C3—C3i−178.9 (3)C6—C5—C10—C11177.6 (3)
O1—N1—C4—C5−176.7 (2)C4—C5—C10—C11−3.9 (4)
N1—C4—C5—C6165.6 (3)C6—C5—C10—C9−1.7 (4)
N1—C4—C5—C10−13.0 (4)C4—C5—C10—C9176.8 (2)
C10—C5—C6—C71.8 (4)C9—C10—C11—C12−0.3 (4)
C4—C5—C6—C7−176.8 (3)C5—C10—C11—C12−179.6 (3)
C5—C6—C7—C8−1.3 (5)C10—C11—C12—C13−0.4 (5)
C6—C7—C8—C90.6 (5)C11—C12—C13—C141.0 (5)
C7—C8—C9—C14−179.3 (3)C12—C13—C14—C9−0.8 (5)
C7—C8—C9—C10−0.6 (4)C8—C9—C14—C13178.8 (3)
C14—C9—C10—C110.5 (4)C10—C9—C14—C130.0 (5)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2416).

References

  • Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem.45, 4677–4684. [PubMed]
  • Dong, W. K., Duan, J. G. & Liu, G. L. (2007). Transition Met. Chem.32, 702–705.
  • Herzfeld, R. & Nagy, P. (1999). Spectrosc. Lett.32, 57–71.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m603–m605.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography