PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1401.
Published online 2008 July 5. doi:  10.1107/S1600536808019338
PMCID: PMC2962034

4-Methoxy­phenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-d-mannopyran­oside

Abstract

The title compound, C21H26O10S, was synthesized in a single step from mannose penta­acetate. The mol­ecular structure confirms the α configuration of the anomeric thioaryl substituent. Spectroscopic and melting-point data obtained for the title compound are in disagreement with those previously reported, indicating the previously reported synthesis [Durette & Shen (1980 [triangle]). Carbohydr. Res. 81, 261–274] to be erroneous. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Altomare et al. (1994 [triangle]); Cao et al. (1998 [triangle]); Cosier & Glazer (1986 [triangle]); Drouin et al. (2007 [triangle]); Durette & Shen (1980 [triangle]); France et al. (2004 [triangle]); Mootoo et al. (1988 [triangle]); Poh (1982 [triangle]); Prince (1982 [triangle]); Roy et al. (1992 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1401-scheme1.jpg

Experimental

Crystal data

  • C21H26O10S
  • M r = 470.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1401-efi1.jpg
  • a = 8.6218 (2) Å
  • b = 15.2945 (3) Å
  • c = 17.5449 (3) Å
  • V = 2313.58 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 150 K
  • 0.44 × 0.32 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]) T min = 0.94, T max = 0.96
  • 18167 measured reflections
  • 5253 independent reflections
  • 4562 reflections with I > 2.0σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 3σ(F 2)] = 0.036
  • wR(F 2) = 0.035
  • S = 1.07
  • 4305 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2269 Friedel pairs
  • Flack parameter: −0.06 (6)

Data collection: COLLECT (Nonius, 2001 [triangle]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK and Hooft et al. (2008 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019338/lh2646sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019338/lh2646Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the EPSRC (Project Studentship GR/T24692/01 to LD) for financial support.

supplementary crystallographic information

Comment

Thioglycosides are extremely useful and versatile glycoside donors for the synthesis of oligosaccharides, which may be activated by a wide range of electrophiles and also by electrochemical methods (France et al., 2004). The nature of an aromatic substituent of an aryl thioglycoside has a strongly modulating effect on the reactivity of such a thioglycoside; strongly electron donating substituents greatly increase their reactivity towards electrophiles (Roy et al., 1992), and also decrease their oxidation potentials so that they may be electrochemically activated at relatively low externally applied potentials (Drouin et al., 2007). Such 'armed' (Mootoo et al., 1988) thioglycosides may therefore be used as donors for the glycosylation of less reactive 'disarmed' thioglycoside acceptors. The title compound was obtained in a single step from mannose penta-acetate by treatment with 4-methoxythiophenol and boron trifluoride etherate in dichloromethane (Fig. 1). Spectroscopic data obtained for this compound was in disagreement with that previously reported in the only reported synthesis (Durette et al., 1980). Moreover the anomalous optical rotation reported therein had also been highlighted in a subsequent paper (Poh, 1982). Single crystal X-ray analysis was therefore undertaken to confirm the authenticity of our material, and this indeed demonstrated the correctness of our structural assignment (Fig. 2), and in particular the α-anomeric configuration of the thioaryl group. We conclude that the previous report (Durette et al., 1980) in fact probably details the synthesis of the corresponding β-anomer, formed by an SN2 substitution reaction on the α-glycosyl bromide, which was incorrectly assigned the α-anomeric configuration by the authors.

The structure has no strong intermolecular interactions, although there are a number of weaker C—H···O interactions that lead to the formation of sheets (Fig. 3 and Table 1)

Experimental

1,2,3,4,6-Penta-O-acetyl-α,β-D-mannopyranoside (12.55 g, 32.20 mmol) and 4-methoxythiophenol (5 ml, 40.70 mmol) were suspended in anhydrous dichloromethane (240 ml) under an atmosphere of argon, and the mixture was cooled to 273K. Boron trifluoride diethyl etherate (38.6 ml, 304.60 mmol) was added dropwise, and the reaction mixture was stirred at 295K. After 22 h, t.l.c. (petroleum ether/ethyl acetate, 1:1) indicated the formation of a major product (Rf 1/2) and the complete consumption of the starting material (Rf 0.4; 1/2). The reaction was then quenched by the addition of triethylamine and the resulting mixture was partitioned between dichloromethane (240 ml) and water (240 ml). The organic extracts were washed with a saturated aqueous solution of sodium hydrogencarbonate (240 ml), a saturated aqueous solution of sodium chloride (240 ml), and were then dried over MgSO4, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate, 6:4) to give the desired 4-methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside (13.31 g, 88%) which crystallized from cyclohexane as a white crystalline solid, m.p. 335-337K (cyclohexane); a sample suitable for X-ray analysis was then re-crystallized from a solution in pentane/ethyl acetate; [α]D20 +108 (c, 1.1 in CHCl3), [α]D21 +117 (c, 1.2 in CHCl3); 1H (400 MHz, C6D6) 1.57 (3H, s, CH3CO), 1.67 (3H, s, CH3CO), 1.69 (3H, s, CH3CO), 1.70 (3H, s, CH3CO), 3.28 (3H, s, OCH3), 4.17 (1H, dd, J5,6 2.5 Hz, J6,6' 12.5 Hz, H-6), 4.42 (1H, dd, J5,6' 5.5 Hz, J6,6' 12.5 Hz, H-6'), 4.65 (1H, ddd, J4,5 8.0 Hz, J5,6 2.5 Hz, J5,6' 5.5 Hz, H-5), 5.42 (1H, brs, CH), 5.70–5.80 (2 x 1H, m, 2 x CH), 5.87 (1H, brs, CH), 6.60 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH), 7.34 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH); δH (400 MHz, CDCl3) 2.02 (3H, s, CH3CO), 2.08 (2 x 3H, s, 2 x CH3CO), 2.15 (3H, s, CH3CO), 3.80 (3H, s, OCH3), 4.12 (1H, dd, J6,6' 12.0 Hz, J5,6 2.0 Hz, H-6), 4.31 (1H, dd, J6,6' 4.0 Hz, J5,6' 6.0 Hz, H-6'), 4.58 (1H, ddd, J5,6 2.0 Hz, J5,6' 6.0 Hz, J4,5 10.0 Hz, H-5), 5.31–5.34 (3 x 1H, m, H-1, 2 x CH), 5.50 (1H, brs, CH), 6.86 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH), 7.43 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH); δC (50 MHz, CDCl3) 20.8 (CH3CO), 20.9 (2 x CH3CO), 21.0 (CH3CO), 55.5 (CH3O), 62.7 (C-6), 66.6 (CH), 69.5 (2 x CH), 70.89 (CH), 86.7 (C-1), 114.9 (2 x ArCH), 122.7 (ArC), 135.2 (2 x ArCH), 160.3 (ArC), 169.9 (C?O), 169.9 (C?O), 170.1 (C?O), 170.7 (C?O); m/z (ESI) 529.37 ([M+NH4+CH3CN]+, 100%); (HMRS (ESI) Calcd. For C21H26NaO10S (M+NH4+) 493.1139. Found 493.1127).

Refinement

A polycrystalline aggregate was divided to give a fragment having dimensions approximately 0.2 x 0.32 x 0.44 mm, which was mounted on a glass fibre using perfluoropolyether oil. The sample was cooled rapidly to 150 K in a stream of cold N2 using an Oxford Cryosystems Cryostream unit (Cosier and Glazer, 1986). Diffraction data were measured using an Bruker–Nonius KappaCCD diffractometer (graphite-monochromated Mo Kα radiation, λ = 0.71073 Å). Intensity data were processed using the DENZO-SMN package (Otwinowski and Minor, 1997).

Examination of the systematic absences of the intensity data showed the space group to be P212121 and the structure was solved using the direct-methods program SIR92 (Altomare et al., 1994), which located all ordered non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite (Betteridge et al., 2003). Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. The relatively large thermal parameters of some of the acetate carbon and carbonyl oxygen atoms (Figure 1) suggest that there may be unresolved disorder of these groups. Attempts to model this did not lead to any improvement in the agreement with the X-ray data and were abandoned.

Refinement of the Flack x parameter (Flack, 1983) gave a value of -0.063 (63) and examination of the Bijvoet Pairs gave the Hooft y parameter as -0.016 (29) (G=1.031 (59)) and giving the probability that the absolute configuration is correct as 1.000, using either a two or three-hypothesis model (Hooft et al., 2008).

The hydrogen atoms were all visible in the difference map, but were repositioned geometrically. Initially they were refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98), and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

A 3-term Chebychev polynomial weighting scheme was applied w = [1-(||Fo|-Fc||/6σ(Fo))2]2 / [0.350T0(x)+0.0808T1(x) + 0.0749]*Tn-1(x)] (Watkin, 1994, Prince, 1982) and the refinement was carried out using a 3 σ cutoff giving a total of 4305 reflections.

Figures

Fig. 1.
Synthesis of (I).
Fig. 2.
The molecular structure of 4-methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside(I) drawn with probability ellipsoids drawn at 50%.
Fig. 3.
The crystal structure of (I) viewed along the c axis. Intermolecular contacts are shown with a broken line.

Crystal data

C21H26O10S1Dx = 1.351 Mg m3
Mr = 470.50Melting point: not measured K
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18167 reflections
a = 8.6218 (2) Åθ = 5–28º
b = 15.2945 (3) ŵ = 0.19 mm1
c = 17.5449 (3) ÅT = 150 K
V = 2313.58 (8) Å3Fragment, colourless
Z = 40.44 × 0.32 × 0.20 mm
F000 = 992

Data collection

Area diffractometer4562 reflections with I > 2.0σ(I)
Monochromator: graphiteRint = 0.033
T = 150 Kθmax = 27.5º
ω scansθmin = 5.2º
Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997)h = −11→11
Tmin = 0.94, Tmax = 0.96k = −19→19
18167 measured reflectionsl = −22→22
5253 independent reflections

Refinement

Refinement on FH-atom parameters constrained
Least-squares matrix: full  Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.350 0.808E-01 0.749E-01
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.001
wR(F2) = 0.035Δρmax = 0.27 e Å3
S = 1.07Δρmin = −0.26 e Å3
4305 reflectionsExtinction correction: None
290 parametersAbsolute structure: Flack (1983), 2269 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.06 (6)
Hydrogen site location: inferred from neighbouring sites

Special details

Refinement. The hydrogen atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89, N—H to 0.86, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.42086 (19)0.44662 (10)0.48435 (10)0.0278
C20.4623 (2)0.51157 (10)0.54678 (9)0.0290
C30.3411 (2)0.51009 (11)0.60972 (9)0.0293
C40.1802 (2)0.52268 (11)0.57752 (9)0.0272
C50.15111 (19)0.45186 (11)0.51798 (10)0.0276
C6−0.0057 (2)0.45811 (11)0.48018 (11)0.0333
O10.26620 (14)0.45701 (8)0.45874 (7)0.0279
S10.46552 (6)0.33607 (3)0.51937 (3)0.0339
C70.4854 (2)0.27972 (11)0.43134 (10)0.0306
C80.3607 (2)0.23433 (13)0.40015 (12)0.0390
C90.3778 (2)0.19047 (13)0.33162 (13)0.0415
C100.5189 (2)0.19112 (11)0.29336 (10)0.0336
C110.6441 (2)0.23463 (12)0.32488 (10)0.0329
C120.6267 (2)0.27925 (12)0.39370 (11)0.0317
O20.52304 (19)0.14679 (9)0.22609 (8)0.0434
C130.6652 (3)0.14715 (16)0.18392 (12)0.0527
O30.46128 (15)0.59743 (7)0.51222 (7)0.0317
C140.5794 (2)0.65171 (13)0.52960 (12)0.0401
O40.6831 (2)0.63201 (11)0.57186 (12)0.0741
C150.5639 (3)0.73699 (13)0.48905 (13)0.0471
O50.36891 (17)0.58054 (9)0.66273 (7)0.0383
C160.4478 (3)0.56208 (15)0.72635 (11)0.0448
O60.5010 (3)0.49096 (12)0.73892 (11)0.0767
C170.4616 (4)0.6411 (2)0.77608 (14)0.0696
O70.06770 (15)0.50827 (8)0.63709 (7)0.0334
C180.0046 (2)0.58014 (12)0.67193 (10)0.0374
O80.04098 (19)0.65349 (8)0.65627 (8)0.0466
C19−0.1121 (3)0.55302 (15)0.72963 (15)0.0595
O9−0.01388 (15)0.54017 (8)0.43982 (7)0.0341
C20−0.1484 (2)0.55419 (14)0.40247 (11)0.0378
O10−0.25415 (18)0.50261 (13)0.40449 (10)0.0578
C21−0.1459 (3)0.63787 (15)0.35898 (12)0.0476
H110.48950.45690.44050.0329*
H210.56680.49910.56720.0352*
H310.34540.45330.63670.0357*
H410.16940.58120.55670.0321*
H510.15630.39350.54280.0332*
H61−0.08830.45530.51820.0412*
H62−0.01890.40840.44390.0426*
H810.26250.23310.42640.0476*
H910.29010.15900.31050.0504*
H1110.74470.23440.29830.0390*
H1210.71460.31170.41550.0391*
H1310.64680.11300.13710.0801*
H1320.74940.12310.21570.0787*
H1330.68950.20840.16930.0802*
H1520.63140.78060.51240.0710*
H1510.45740.75700.49240.0705*
H1530.58840.72840.43510.0710*
H1720.54160.63010.81310.1035*
H1710.36330.65150.79910.1058*
H1730.49310.69090.74460.1044*
H192−0.14710.60410.75640.0883*
H191−0.06550.51130.76470.0876*
H193−0.20040.52410.70470.0882*
H212−0.24870.64980.33850.0716*
H211−0.11610.68350.39300.0723*
H213−0.07240.63400.31700.0725*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0262 (8)0.0281 (8)0.0291 (8)0.0025 (6)0.0019 (7)0.0036 (7)
C20.0285 (8)0.0272 (8)0.0312 (8)0.0019 (7)−0.0038 (8)0.0055 (6)
C30.0376 (9)0.0248 (8)0.0256 (8)0.0018 (7)−0.0030 (7)0.0019 (6)
C40.0311 (9)0.0255 (8)0.0250 (8)0.0008 (7)0.0039 (7)0.0025 (6)
C50.0281 (8)0.0269 (8)0.0277 (8)−0.0001 (6)0.0036 (7)0.0005 (7)
C60.0315 (9)0.0336 (8)0.0349 (8)−0.0036 (7)−0.0019 (8)0.0011 (8)
O10.0282 (6)0.0299 (6)0.0258 (6)0.0020 (5)0.0010 (5)0.0012 (5)
S10.0391 (2)0.03005 (19)0.0327 (2)0.00833 (19)0.0037 (2)0.00485 (18)
C70.0322 (9)0.0244 (7)0.0352 (9)0.0038 (7)−0.0009 (8)0.0044 (6)
C80.0267 (9)0.0412 (10)0.0492 (11)0.0006 (8)0.0011 (8)0.0039 (9)
C90.0348 (10)0.0409 (10)0.0488 (11)−0.0048 (8)−0.0094 (9)−0.0022 (9)
C100.0397 (10)0.0271 (8)0.0342 (9)0.0012 (8)−0.0072 (8)0.0003 (7)
C110.0325 (9)0.0310 (9)0.0354 (9)−0.0011 (7)0.0044 (8)0.0002 (7)
C120.0310 (9)0.0275 (8)0.0367 (9)−0.0022 (7)−0.0006 (8)0.0023 (7)
O20.0544 (9)0.0377 (7)0.0380 (7)0.0002 (7)−0.0072 (7)−0.0076 (6)
C130.0666 (15)0.0549 (13)0.0365 (11)0.0092 (12)−0.0010 (11)−0.0083 (10)
O30.0334 (6)0.0279 (6)0.0338 (6)−0.0016 (5)−0.0016 (6)0.0066 (5)
C140.0412 (10)0.0334 (9)0.0457 (11)−0.0063 (8)−0.0018 (9)−0.0007 (8)
O40.0709 (12)0.0497 (10)0.1018 (15)−0.0241 (9)−0.0468 (12)0.0199 (10)
C150.0560 (13)0.0304 (9)0.0549 (12)−0.0044 (9)0.0132 (11)0.0037 (9)
O50.0513 (8)0.0370 (7)0.0266 (6)0.0028 (6)−0.0104 (6)−0.0042 (5)
C160.0469 (12)0.0581 (13)0.0293 (9)−0.0087 (10)−0.0104 (9)0.0065 (9)
O60.1008 (16)0.0624 (11)0.0669 (11)−0.0045 (11)−0.0511 (12)0.0164 (9)
C170.0801 (19)0.0841 (18)0.0445 (12)−0.0086 (16)−0.0198 (14)−0.0186 (12)
O70.0412 (7)0.0274 (6)0.0316 (6)0.0034 (5)0.0126 (5)−0.0009 (5)
C180.0477 (11)0.0303 (9)0.0341 (9)0.0071 (8)0.0074 (9)−0.0021 (7)
O80.0655 (10)0.0284 (6)0.0460 (8)0.0065 (7)0.0131 (8)0.0003 (6)
C190.0782 (17)0.0413 (12)0.0591 (14)0.0126 (12)0.0369 (14)0.0011 (10)
O90.0268 (6)0.0367 (6)0.0387 (7)0.0021 (5)−0.0064 (5)0.0006 (5)
C200.0249 (9)0.0564 (12)0.0321 (9)0.0068 (9)−0.0045 (8)−0.0100 (8)
O100.0281 (7)0.0905 (13)0.0547 (10)−0.0112 (7)−0.0078 (7)0.0022 (9)
C210.0476 (12)0.0529 (13)0.0423 (11)0.0190 (10)−0.0134 (10)−0.0079 (9)

Geometric parameters (Å, °)

C1—C21.521 (2)C12—H1210.984
C1—O11.416 (2)O2—C131.432 (3)
C1—S11.8398 (16)C13—H1310.985
C1—H110.984C13—H1320.987
C2—C31.520 (2)C13—H1330.994
C2—O31.4464 (18)O3—C141.349 (2)
C2—H210.988C14—O41.200 (3)
C3—C41.511 (2)C14—C151.492 (3)
C3—O51.443 (2)C15—H1520.975
C3—H310.990C15—H1510.970
C4—C51.525 (2)C15—H1530.978
C4—O71.443 (2)O5—C161.337 (2)
C4—H410.972C16—O61.201 (3)
C5—C61.509 (2)C16—C171.496 (3)
C5—O11.439 (2)C17—H1720.962
C5—H510.995C17—H1710.952
C6—O91.443 (2)C17—H1730.980
C6—H610.977O7—C181.370 (2)
C6—H620.998C18—O81.197 (2)
S1—C71.7770 (18)C18—C191.486 (3)
C7—C81.392 (3)C19—H1920.961
C7—C121.385 (3)C19—H1910.973
C8—C91.385 (3)C19—H1930.983
C8—H810.965O9—C201.350 (2)
C9—C101.390 (3)C20—O101.206 (3)
C9—H910.969C20—C211.490 (3)
C10—C111.384 (3)C21—H2120.973
C10—O21.362 (2)C21—H2110.953
C11—C121.395 (3)C21—H2130.974
C11—H1110.984
C2—C1—O1112.11 (13)C12—C11—H111120.4
C2—C1—S1108.09 (12)C11—C12—C7120.66 (17)
O1—C1—S1113.96 (11)C11—C12—H121120.0
C2—C1—H11108.5C7—C12—H121119.3
O1—C1—H11107.4C10—O2—C13117.93 (17)
S1—C1—H11106.4O2—C13—H131106.9
C1—C2—C3110.61 (14)O2—C13—H132109.7
C1—C2—O3106.83 (13)H131—C13—H132113.0
C3—C2—O3108.29 (13)O2—C13—H133108.5
C1—C2—H21110.4H131—C13—H133108.5
C3—C2—H21111.1H132—C13—H133110.1
O3—C2—H21109.4C2—O3—C14117.36 (14)
C2—C3—C4110.96 (14)O3—C14—O4123.21 (18)
C2—C3—O5110.06 (14)O3—C14—C15111.29 (17)
C4—C3—O5107.35 (14)O4—C14—C15125.49 (19)
C2—C3—H31109.6C14—C15—H152110.1
C4—C3—H31108.9C14—C15—H151109.4
O5—C3—H31109.9H152—C15—H151108.9
C3—C4—C5108.45 (13)C14—C15—H153109.0
C3—C4—O7109.09 (13)H152—C15—H153111.7
C5—C4—O7106.10 (13)H151—C15—H153107.8
C3—C4—H41110.2C3—O5—C16117.69 (15)
C5—C4—H41112.4O5—C16—O6122.6 (2)
O7—C4—H41110.4O5—C16—C17110.9 (2)
C4—C5—C6113.78 (14)O6—C16—C17126.5 (2)
C4—C5—O1110.03 (13)C16—C17—H172108.0
C6—C5—O1107.28 (14)C16—C17—H171108.1
C4—C5—H51109.3H172—C17—H171112.4
C6—C5—H51106.9C16—C17—H173108.7
O1—C5—H51109.5H172—C17—H173108.6
C5—C6—O9108.34 (13)H171—C17—H173110.9
C5—C6—H61110.6C4—O7—C18117.88 (13)
O9—C6—H61109.7O7—C18—O8123.04 (17)
C5—C6—H62109.5O7—C18—C19110.42 (16)
O9—C6—H62110.1O8—C18—C19126.54 (18)
H61—C6—H62108.6C18—C19—H192108.6
C5—O1—C1114.46 (13)C18—C19—H191109.5
C1—S1—C7100.12 (8)H192—C19—H191110.7
S1—C7—C8120.59 (14)C18—C19—H193110.3
S1—C7—C12120.12 (14)H192—C19—H193109.9
C8—C7—C12119.28 (17)H191—C19—H193107.8
C7—C8—C9120.06 (18)C6—O9—C20114.75 (14)
C7—C8—H81120.0O9—C20—O10122.1 (2)
C9—C8—H81119.9O9—C20—C21111.87 (17)
C8—C9—C10120.60 (18)O10—C20—C21126.01 (19)
C8—C9—H91119.3C20—C21—H212109.7
C10—C9—H91120.1C20—C21—H211108.2
C9—C10—C11119.57 (17)H212—C21—H211109.9
C9—C10—O2115.99 (17)C20—C21—H213110.2
C11—C10—O2124.43 (18)H212—C21—H213108.9
C10—C11—C12119.80 (18)H211—C21—H213110.0
C10—C11—H111119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H11···O10i0.982.403.248 (3)144
C19—H191···O2ii0.972.543.362 (3)142
C21—H213···O6iii0.972.433.143 (3)130

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2646).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Cao, S., Hernández-Matéo, F. & Roy, R. (1998). J. Carbohydr. Chem.17, 609–631.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Drouin, L., Compton, R. G., Fietkau, N. & Fairbanks, A. J. (2007). Synlett, pp.2711–2717.
  • Durette, P. L. & Shen, T. Y. (1980). Carbohydr. Res.81, 261–274. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • France, R. R., Compton, R. G., Davis, B. G., Fairbanks, A. J., Rees, N. V. & Wadhawan, J. D. (2004). Org. Biomol. Chem.2, 2195–2202. [PubMed]
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [PMC free article] [PubMed]
  • Mootoo, D. R., Konradsson, P., Udodong, U. & Fraser-Reid, B. (1988). J. Am. Chem. Soc.110, 5583–5584.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Poh, B.-L. (1982). Carbohydr. Res.111, 163–169.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, p. 104. New York: Springer-Verlag.
  • Roy, R., Andersson, F. O. & Letellier, M. (1992). Tetrahedron Lett.33, 6053–6056.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography