PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1397.
Published online 2008 July 5. doi:  10.1107/S1600536808019788
PMCID: PMC2962030

Methyl N′-[(E)-4-hydr­oxy-3-methoxy­benzyl­idene]hydrazinecarboxyl­ate

Abstract

The mol­ecule of the title compound, C10H12N2O4, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate mean plane is 36.54 (6)°. The mol­ecules are linked into a two-dimensional network by inter­molecular O—H(...)O, N—H(...)O and O—H(...)N hydrogen bonds, and by aromatic π–π stacking inter­actions [ring-centroid separation 3.7689 (9) Å].

Related literature

For a related structure, see: Cheng (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1397-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O4
  • M r = 224.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1397-efi1.jpg
  • a = 9.4718 (10) Å
  • b = 11.0983 (11) Å
  • c = 10.3220 (11) Å
  • β = 98.272 (4)°
  • V = 1073.77 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 123 (2) K
  • 0.29 × 0.27 × 0.26 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.965, T max = 0.968
  • 11214 measured reflections
  • 1887 independent reflections
  • 1590 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.113
  • S = 1.02
  • 1887 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019788/hb2754sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019788/hb2754Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support from Zhejiang Police College, China.

supplementary crystallographic information

Comment

As part of our ongoig studies of benzaldehydehydrazone derivatives (Cheng, 2008), we now report the synthesis and structure of the title compound, (I).

The title molecule (Fig. 1) adopts a trans configuration with respect to the C═N bond. The dihedral angle between the benzene ring and the C9/C10//N1/N2/O3/O4 plane is 36.54 (6)°. Otherwise, the bond lengths and angles for (I) agree with those observed for (E)-methylN'-(4-hydroxybenzylidene)hydrazinecarboxylate (Cheng, 2008).

In the crystal, the molecules are linked into a two-dimensional network by intramolecular O—H···O and intermolecular O—H···O, N—H···O, O—H···N hydrogen bonds (Table 1). Additionally, neighbouring aromatic rings interact by π–π stacking [centroid separation = 3.7689 (9) Å].

Experimental

4-Hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 480–482 K).

Refinement

The H atoms were placed geometrically (O—H = 0.84 Å, N—H = 0.88 Å and C—H = 0.95 or 0.98 Å) and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

C10H12N2O4F000 = 472
Mr = 224.22Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1887 reflections
a = 9.4718 (10) Åθ = 2.2–25.0º
b = 11.0983 (11) ŵ = 0.11 mm1
c = 10.3220 (11) ÅT = 123 (2) K
β = 98.272 (4)ºBlock, colourless
V = 1073.77 (19) Å30.29 × 0.27 × 0.26 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1887 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 123(2) Kθmax = 25.0º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −11→10
Tmin = 0.965, Tmax = 0.968k = −13→13
11214 measured reflectionsl = −11→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035  w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1817P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.010
S = 1.02Δρmax = 0.19 e Å3
1887 reflectionsΔρmin = −0.13 e Å3
146 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.46841 (16)0.22471 (12)0.90488 (15)0.0408 (4)
C20.57541 (17)0.23855 (13)1.00956 (16)0.0453 (4)
H2A0.57600.30731.06450.054*
C30.46883 (16)0.12325 (13)0.82397 (14)0.0405 (4)
C40.3402 (2)0.01177 (17)0.64655 (17)0.0596 (5)
H4A0.25500.01910.58090.089*
H4B0.3309−0.05890.70160.089*
H4C0.42460.00260.60250.089*
C50.57560 (15)0.03861 (13)0.84778 (14)0.0406 (4)
H50.5761−0.02910.79160.049*
C60.68260 (16)0.15212 (14)1.03504 (15)0.0439 (4)
H60.75540.16181.10790.053*
C70.68361 (15)0.05223 (13)0.95482 (14)0.0390 (4)
C80.79364 (16)−0.04036 (13)0.98484 (15)0.0425 (4)
H80.8497−0.04141.06890.051*
C90.96010 (15)−0.28026 (12)0.85416 (14)0.0381 (4)
C101.0957 (2)−0.45396 (18)0.82782 (19)0.0681 (6)
H10A1.1524−0.51520.88040.102*
H10B1.1562−0.41130.77340.102*
H10C1.0166−0.49290.77150.102*
N10.81595 (13)−0.11952 (11)0.90087 (12)0.0409 (3)
N20.91622 (13)−0.20662 (11)0.94426 (12)0.0434 (3)
H2B0.9502−0.21371.02790.052*
O10.36374 (12)0.30938 (9)0.88270 (11)0.0543 (3)
H10.30600.29000.81640.081*
O20.35509 (13)0.11728 (10)0.72612 (11)0.0571 (4)
O30.93369 (12)−0.26695 (10)0.73659 (10)0.0508 (3)
O41.03976 (12)−0.36926 (10)0.91342 (10)0.0520 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0423 (8)0.0368 (7)0.0437 (9)0.0025 (6)0.0071 (6)0.0028 (6)
C20.0511 (9)0.0373 (8)0.0469 (9)0.0004 (6)0.0045 (7)−0.0050 (6)
C30.0410 (8)0.0445 (8)0.0360 (8)0.0010 (6)0.0055 (6)0.0012 (6)
C40.0648 (11)0.0618 (10)0.0485 (10)0.0017 (9)−0.0038 (8)−0.0113 (8)
C50.0432 (8)0.0401 (8)0.0398 (8)0.0016 (6)0.0101 (6)−0.0025 (6)
C60.0431 (8)0.0458 (8)0.0415 (9)−0.0022 (7)0.0018 (6)0.0014 (6)
C70.0387 (8)0.0403 (7)0.0390 (8)−0.0002 (6)0.0095 (6)0.0040 (6)
C80.0431 (8)0.0455 (8)0.0387 (8)0.0030 (6)0.0056 (6)0.0025 (6)
C90.0352 (7)0.0434 (8)0.0349 (8)−0.0014 (6)0.0029 (6)0.0006 (6)
C100.0767 (13)0.0687 (12)0.0567 (11)0.0307 (10)0.0019 (9)−0.0149 (9)
N10.0393 (7)0.0442 (7)0.0393 (7)0.0059 (5)0.0064 (5)0.0070 (5)
N20.0465 (7)0.0500 (7)0.0328 (7)0.0132 (6)0.0033 (5)0.0023 (5)
O10.0565 (7)0.0465 (6)0.0559 (7)0.0137 (5)−0.0053 (5)−0.0084 (5)
O20.0551 (7)0.0610 (7)0.0501 (7)0.0157 (5)−0.0093 (5)−0.0147 (5)
O30.0589 (7)0.0593 (7)0.0336 (7)0.0073 (5)0.0046 (5)0.0001 (5)
O40.0612 (7)0.0534 (7)0.0402 (6)0.0199 (5)0.0026 (5)−0.0030 (5)

Geometric parameters (Å, °)

C1—O11.3613 (17)C6—H60.9500
C1—C21.380 (2)C7—C81.465 (2)
C1—C31.402 (2)C8—N11.2729 (19)
C2—C61.394 (2)C8—H80.9500
C2—H2A0.9500C9—O31.2123 (18)
C3—O21.3682 (18)C9—O41.3366 (17)
C3—C51.376 (2)C9—N21.3479 (19)
C4—O21.4256 (19)C10—O41.4421 (19)
C4—H4A0.9800C10—H10A0.9800
C4—H4B0.9800C10—H10B0.9800
C4—H4C0.9800C10—H10C0.9800
C5—C71.402 (2)N1—N21.3837 (16)
C5—H50.9500N2—H2B0.8800
C6—C71.385 (2)O1—H10.8400
O1—C1—C2119.35 (13)C6—C7—C8120.08 (13)
O1—C1—C3121.23 (13)C5—C7—C8120.50 (13)
C2—C1—C3119.42 (13)N1—C8—C7121.53 (13)
C1—C2—C6120.28 (14)N1—C8—H8119.2
C1—C2—H2A119.9C7—C8—H8119.2
C6—C2—H2A119.9O3—C9—O4124.73 (13)
O2—C3—C5125.38 (13)O3—C9—N2125.25 (13)
O2—C3—C1114.15 (13)O4—C9—N2110.01 (12)
C5—C3—C1120.45 (13)O4—C10—H10A109.5
O2—C4—H4A109.5O4—C10—H10B109.5
O2—C4—H4B109.5H10A—C10—H10B109.5
H4A—C4—H4B109.5O4—C10—H10C109.5
O2—C4—H4C109.5H10A—C10—H10C109.5
H4A—C4—H4C109.5H10B—C10—H10C109.5
H4B—C4—H4C109.5C8—N1—N2115.80 (12)
C3—C5—C7120.09 (13)C9—N2—N1117.75 (12)
C3—C5—H5120.0C9—N2—H2B121.1
C7—C5—H5120.0N1—N2—H2B121.1
C7—C6—C2120.37 (14)C1—O1—H1109.5
C7—C6—H6119.8C3—O2—C4117.85 (12)
C2—C6—H6119.8C9—O4—C10115.75 (12)
C6—C7—C5119.38 (13)
O1—C1—C2—C6179.17 (14)C3—C5—C7—C8176.91 (13)
C3—C1—C2—C6−0.3 (2)C6—C7—C8—N1−165.42 (14)
O1—C1—C3—O2−1.5 (2)C5—C7—C8—N116.9 (2)
C2—C1—C3—O2177.96 (14)C7—C8—N1—N2−175.85 (12)
O1—C1—C3—C5179.93 (14)O3—C9—N2—N110.3 (2)
C2—C1—C3—C5−0.6 (2)O4—C9—N2—N1−170.91 (11)
O2—C3—C5—C7−177.24 (13)C8—N1—N2—C9−169.52 (13)
C1—C3—C5—C71.1 (2)C5—C3—O2—C44.0 (2)
C1—C2—C6—C70.7 (2)C1—C3—O2—C4−174.49 (14)
C2—C6—C7—C5−0.1 (2)O3—C9—O4—C10−0.3 (2)
C2—C6—C7—C8−177.83 (13)N2—C9—O4—C10−179.09 (14)
C3—C5—C7—C6−0.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.212.6695 (15)114
O1—H1···O3i0.842.343.0286 (16)139
O1—H1···N1i0.842.573.2640 (17)140
N2—H2B···O3ii0.882.193.0124 (16)155

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2754).

References

  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, X.-W. (2008). Acta Cryst. E64, o1302. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography