PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1396.
Published online 2008 July 5. doi:  10.1107/S1600536808019818
PMCID: PMC2962029

Ethyl N′-[(E)-4-hydroxy­benzyl­idene]hydrazinecarboxyl­ate at 123 K

Abstract

The mol­ecule of the title compound, C10H12N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate plane is 14.6 (1)°. Mol­ecules are linked into a three-dimensional network by O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds, and by C—H(...)π inter­actions.

Related literature

For general background, see: Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]); Borg et al. (1999 [triangle]). For a related structure, see: Shang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1396-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O3
  • M r = 208.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1396-efi1.jpg
  • a = 11.342 (3) Å
  • b = 7.6114 (17) Å
  • c = 24.986 (5) Å
  • V = 2157.0 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 123 (2) K
  • 0.26 × 0.25 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.965, T max = 0.968
  • 21084 measured reflections
  • 1900 independent reflections
  • 1521 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.125
  • S = 1.02
  • 1900 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019818/ci2620sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019818/ci2620Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support from Zhejiang Police College, China.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound is reported here.

The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The hydrazine carboxylic acid ethyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C1–C6 ring and the C7/C8/N1/N2/O2/O3 plane is 14.6 (1)°. The bond lengths and angles agree with those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007).

In the crystal structure, O—H···O, N—H···O and C—H···O hydrogen bonds and C—H···π interactions (Table 1) link the molecules into a three-dimensional network (Fig.2).

Experimental

4-Hydroxybenzaldehyde (12.2 g, 0.1 mol) and ethyl hydrazinecarboxylate (10.4 g, 0.1 mol) were dissolved in methanol (50 ml) with stirring and left for 6 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 460–462 K).

Refinement

H atoms were positioned geometrically (N—H = 0.86 Å, O—H = 0.82 Å and C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds.

Crystal data

C10H12N2O3F000 = 880
Mr = 208.22Dx = 1.282 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1900 reflections
a = 11.342 (3) Åθ = 1.6–25.0º
b = 7.6114 (17) ŵ = 0.10 mm1
c = 24.986 (5) ÅT = 123 (2) K
V = 2157.0 (9) Å3Block, colourless
Z = 80.26 × 0.25 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer1900 independent reflections
Radiation source: fine-focus sealed tube1521 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 123(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −13→13
Tmin = 0.965, Tmax = 0.968k = −8→9
21084 measured reflectionsl = −28→29

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0722P)2 + 0.4536P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.21 e Å3
1900 reflectionsΔρmin = −0.18 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0110 (18)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.38975 (10)0.12445 (15)0.06297 (5)0.0550 (4)
O10.10016 (11)0.07264 (18)0.38449 (5)0.0662 (4)
H10.03960.11210.39780.099*
O30.31948 (13)0.34186 (17)0.01045 (5)0.0708 (4)
N10.23119 (12)0.22542 (18)0.13972 (5)0.0472 (4)
N20.23619 (13)0.29838 (19)0.08895 (5)0.0533 (4)
H2A0.18590.37690.07940.064*
C40.21890 (13)0.1206 (2)0.25066 (6)0.0451 (4)
H40.28500.08390.23170.054*
C60.13472 (13)0.2248 (2)0.22515 (6)0.0422 (4)
C10.10857 (14)0.1271 (2)0.33239 (6)0.0459 (4)
C30.02413 (14)0.2324 (2)0.30815 (7)0.0493 (4)
H3−0.04100.27070.32750.059*
C70.14800 (14)0.2813 (2)0.16958 (7)0.0471 (4)
H70.09400.36080.15550.056*
C20.20628 (14)0.0712 (2)0.30315 (6)0.0481 (4)
H20.26290.00040.31920.058*
C50.03729 (14)0.2800 (2)0.25500 (7)0.0491 (4)
H5−0.01970.35010.23890.059*
C80.32053 (15)0.2449 (2)0.05487 (6)0.0489 (4)
C90.3972 (3)0.2864 (3)−0.03288 (9)0.1029 (9)
H9A0.47490.2601−0.01880.123*
H9B0.36630.1809−0.04950.123*
C100.4055 (3)0.4246 (4)−0.07193 (10)0.1096 (10)
H10A0.45640.3880−0.10050.164*
H10B0.43720.5282−0.05540.164*
H10C0.32850.4497−0.08590.164*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0572 (7)0.0535 (7)0.0542 (7)0.0039 (6)0.0023 (5)0.0014 (5)
O10.0693 (8)0.0818 (9)0.0475 (8)0.0116 (7)0.0088 (6)0.0139 (6)
O30.1000 (10)0.0651 (8)0.0472 (7)0.0138 (7)0.0168 (7)0.0131 (6)
N10.0533 (8)0.0472 (8)0.0412 (8)0.0007 (6)0.0011 (6)0.0059 (6)
N20.0639 (9)0.0534 (8)0.0426 (8)0.0116 (7)0.0048 (7)0.0112 (6)
C40.0428 (8)0.0455 (9)0.0469 (9)0.0038 (7)0.0050 (7)−0.0010 (7)
C60.0431 (8)0.0387 (8)0.0447 (9)−0.0018 (6)−0.0001 (6)0.0012 (6)
C10.0508 (9)0.0447 (9)0.0421 (9)−0.0033 (7)0.0001 (7)0.0022 (7)
C30.0426 (8)0.0528 (10)0.0526 (10)0.0030 (7)0.0077 (7)0.0009 (8)
C70.0495 (9)0.0447 (9)0.0471 (10)0.0040 (7)−0.0013 (7)0.0053 (7)
C20.0484 (8)0.0478 (9)0.0483 (10)0.0063 (7)−0.0029 (7)0.0024 (7)
C50.0437 (8)0.0501 (9)0.0534 (10)0.0061 (7)0.0001 (7)0.0069 (7)
C80.0592 (10)0.0455 (9)0.0418 (9)−0.0046 (8)0.0000 (7)0.0011 (7)
C90.155 (3)0.0936 (18)0.0598 (14)0.0209 (17)0.0467 (16)0.0063 (12)
C100.107 (2)0.155 (3)0.0666 (15)0.0021 (19)0.0209 (13)0.0293 (16)

Geometric parameters (Å, °)

O2—C81.224 (2)C1—C31.388 (2)
O1—C11.3695 (19)C1—C21.394 (2)
O1—H10.82C3—C51.385 (2)
O3—C81.3329 (19)C3—H30.93
O3—C91.458 (3)C7—H70.93
N1—C71.276 (2)C2—H20.93
N1—N21.3860 (18)C5—H50.93
N2—C81.344 (2)C9—C101.437 (3)
N2—H2A0.86C9—H9A0.97
C4—C21.372 (2)C9—H9B0.97
C4—C61.395 (2)C10—H10A0.96
C4—H40.93C10—H10B0.96
C6—C51.398 (2)C10—H10C0.96
C6—C71.462 (2)
C1—O1—H1109.5C4—C2—C1120.03 (14)
C8—O3—C9116.92 (16)C4—C2—H2120.0
C7—N1—N2115.58 (13)C1—C2—H2120.0
C8—N2—N1119.19 (14)C3—C5—C6121.20 (15)
C8—N2—H2A120.4C3—C5—H5119.4
N1—N2—H2A120.4C6—C5—H5119.4
C2—C4—C6121.41 (14)O2—C8—O3123.93 (15)
C2—C4—H4119.3O2—C8—N2125.36 (15)
C6—C4—H4119.3O3—C8—N2110.71 (15)
C4—C6—C5117.91 (15)C10—C9—O3109.4 (2)
C4—C6—C7122.06 (14)C10—C9—H9A109.8
C5—C6—C7119.99 (14)O3—C9—H9A109.8
O1—C1—C3122.78 (14)C10—C9—H9B109.8
O1—C1—C2117.48 (14)O3—C9—H9B109.8
C3—C1—C2119.74 (15)H9A—C9—H9B108.2
C5—C3—C1119.70 (15)C9—C10—H10A109.5
C5—C3—H3120.1C9—C10—H10B109.5
C1—C3—H3120.1H10A—C10—H10B109.5
N1—C7—C6122.24 (15)C9—C10—H10C109.5
N1—C7—H7118.9H10A—C10—H10C109.5
C6—C7—H7118.9H10B—C10—H10C109.5
C7—N1—N2—C8−179.28 (15)C3—C1—C2—C40.2 (2)
C2—C4—C6—C50.9 (2)C1—C3—C5—C6−0.3 (3)
C2—C4—C6—C7178.80 (15)C4—C6—C5—C3−0.3 (2)
O1—C1—C3—C5−178.91 (15)C7—C6—C5—C3−178.25 (15)
C2—C1—C3—C50.4 (2)C9—O3—C8—O27.1 (3)
N2—N1—C7—C6−176.50 (13)C9—O3—C8—N2−173.16 (19)
C4—C6—C7—N16.8 (3)N1—N2—C8—O26.4 (3)
C5—C6—C7—N1−175.38 (15)N1—N2—C8—O3−173.41 (14)
C6—C4—C2—C1−0.9 (2)C8—O3—C9—C10−166.9 (2)
O1—C1—C2—C4179.54 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.752 (2)161
N2—H2A···O2ii0.862.112.936 (2)161
C9—H9B···O1iii0.972.573.425 (3)148
C2—H2···Cg1iv0.932.973.636 (2)130
C5—H5···Cg1v0.932.773.613 (2)151

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, −y, z−1/2; (iv) −x−1/2, y−3/2, z; (v) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2620).

References

  • Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [PubMed]
  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography