PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1395.
Published online 2008 July 5. doi:  10.1107/S1600536808019302
PMCID: PMC2962028

2,5,7-Trimethyl-3-phenyl­sulfinyl-1-benzo­furan

Abstract

The title compound, C17H16O2S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The phenyl ring is nearly perpendicular to the plane of the benzofuran unit [88.30 (9)°] and is tilted slightly towards it. No π–π or C—H(...)π inter­actions are observed between neighbouring mol­ecules in the crystal structure because of steric hindrance induced by the three methyl groups.

Related literature

For the crystal structures of similar 3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1395-scheme1.jpg

Experimental

Crystal data

  • C17H16O2S
  • M r = 284.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1395-efi1.jpg
  • a = 18.393 (2) Å
  • b = 6.1515 (6) Å
  • c = 13.054 (1) Å
  • β = 93.024 (2)°
  • V = 1474.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 8615 measured reflections
  • 3215 independent reflections
  • 1611 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.163
  • S = 1.01
  • 3215 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019302/rn2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019302/rn2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to the our communications on the synthesis and structures of 3-phenylsulfinyl-1-benzofuran analogues, viz. 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007) and 2,4,6,7-tetramethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [88.30 (9)°] and is tilted slightly towards it. In the crystal structure, π—π or C—H···π interactions between adjacent molecules are prevented by the steric influence of the three methyl groups in the molecule.

Experimental

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 82%, m.p. 393–394 K; Rf = 0.65 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.22 (s, 3H), 2.41 (s, 3H), 2.75 (s, 3H), 6.84 (d, J = 6.96 Hz, 2H), 7.43–7.51 (m, 3H), 7.67 (d, J = 6.60 Hz, 2H); EI—MS 284 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoides drawn at the 30% probability level.

Crystal data

C17H16O2SF000 = 600
Mr = 284.36Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P_2ybcCell parameters from 1802 reflections
a = 18.393 (2) Åθ = 3.1–24.3º
b = 6.1515 (6) ŵ = 0.22 mm1
c = 13.054 (1) ÅT = 298 (2) K
β = 93.024 (2)ºBlock, colorless
V = 1474.9 (2) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3215 independent reflections
Radiation source: fine-focus sealed tube1611 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.066
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 298(2) Kθmin = 1.1º
[var phi] and ω scansh = −18→23
Absorption correction: nonek = −6→7
8615 measured reflectionsl = −16→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.163  w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2115P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3215 reflectionsΔρmax = 0.17 e Å3
184 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.33491 (5)0.75793 (15)0.41600 (7)0.0730 (3)
O10.12972 (11)0.7187 (3)0.31945 (14)0.0536 (5)
O20.34960 (15)0.7328 (5)0.52790 (19)0.1133 (11)
C10.24341 (15)0.6884 (5)0.3874 (2)0.0481 (7)
C20.20160 (15)0.5094 (4)0.42636 (19)0.0438 (7)
C30.21511 (17)0.3364 (5)0.4936 (2)0.0517 (7)
H30.26110.31580.52510.062*
C40.15868 (19)0.1960 (5)0.5125 (2)0.0577 (8)
C50.09051 (19)0.2308 (5)0.4641 (2)0.0653 (9)
H50.05340.13380.47750.078*
C60.07447 (16)0.4016 (5)0.3972 (2)0.0571 (8)
C70.13246 (15)0.5374 (4)0.38166 (19)0.0450 (7)
C80.19788 (17)0.8067 (5)0.3253 (2)0.0517 (7)
C90.37498 (15)0.5292 (5)0.3559 (2)0.0552 (8)
C100.36512 (17)0.5067 (6)0.2517 (3)0.0727 (10)
H100.33750.60730.21340.087*
C110.3964 (2)0.3347 (9)0.2050 (3)0.0974 (14)
H110.38910.31610.13450.117*
C120.4385 (2)0.1893 (8)0.2609 (5)0.1024 (14)
H120.45880.07150.22810.123*
C130.4510 (2)0.2152 (7)0.3637 (4)0.0973 (14)
H130.48070.11790.40090.117*
C140.41888 (19)0.3882 (7)0.4128 (3)0.0779 (11)
H140.42700.40840.48310.094*
C150.1696 (2)0.0106 (6)0.5874 (3)0.0864 (11)
H15A0.2207−0.00770.60430.130*
H15B0.1503−0.12070.55690.130*
H15C0.14490.04220.64860.130*
C160.00061 (18)0.4398 (7)0.3461 (3)0.0873 (12)
H16A−0.01610.58250.36310.131*
H16B−0.03290.33320.36950.131*
H16C0.00350.42800.27310.131*
C170.2083 (2)1.0024 (5)0.2620 (2)0.0760 (10)
H17A0.25481.06620.28030.114*
H17B0.17041.10560.27370.114*
H17C0.20630.96240.19080.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0663 (6)0.0763 (7)0.0762 (6)−0.0265 (5)0.0011 (4)−0.0218 (5)
O10.0570 (13)0.0537 (13)0.0496 (12)0.0046 (10)−0.0005 (9)−0.0029 (10)
O20.0903 (18)0.178 (3)0.0700 (17)−0.0144 (18)−0.0154 (14)−0.0556 (17)
C10.0577 (18)0.0457 (17)0.0409 (16)−0.0104 (14)0.0017 (13)−0.0058 (12)
C20.0541 (17)0.0419 (16)0.0356 (14)−0.0058 (13)0.0054 (12)−0.0090 (12)
C30.067 (2)0.0490 (17)0.0387 (16)0.0014 (15)0.0030 (14)−0.0008 (13)
C40.082 (2)0.0468 (19)0.0457 (18)−0.0085 (16)0.0177 (16)−0.0021 (13)
C50.073 (2)0.061 (2)0.064 (2)−0.0234 (18)0.0229 (17)−0.0057 (17)
C60.0527 (19)0.064 (2)0.0554 (19)−0.0108 (16)0.0085 (15)−0.0140 (16)
C70.0528 (18)0.0443 (17)0.0379 (15)−0.0011 (14)0.0025 (13)−0.0060 (13)
C80.069 (2)0.0433 (18)0.0434 (16)−0.0031 (15)0.0072 (14)−0.0056 (13)
C90.0415 (17)0.072 (2)0.0522 (18)−0.0146 (15)0.0024 (14)0.0029 (16)
C100.051 (2)0.108 (3)0.058 (2)0.0070 (19)−0.0011 (16)−0.012 (2)
C110.061 (2)0.144 (4)0.088 (3)0.006 (3)0.006 (2)−0.033 (3)
C120.082 (3)0.096 (3)0.132 (4)−0.004 (3)0.038 (3)−0.022 (3)
C130.074 (3)0.089 (3)0.131 (4)0.008 (2)0.023 (3)0.033 (3)
C140.067 (2)0.100 (3)0.067 (2)−0.013 (2)0.0089 (19)0.018 (2)
C150.132 (3)0.063 (2)0.066 (2)−0.006 (2)0.026 (2)0.0133 (18)
C160.054 (2)0.107 (3)0.100 (3)−0.014 (2)0.001 (2)−0.017 (2)
C170.112 (3)0.052 (2)0.065 (2)−0.0031 (19)0.015 (2)0.0073 (16)

Geometric parameters (Å, °)

S—O21.480 (3)C9—C141.376 (4)
S—C11.757 (3)C10—C111.364 (5)
S—C91.789 (3)C10—H100.9300
O1—C81.364 (3)C11—C121.368 (6)
O1—C71.379 (3)C11—H110.9300
C1—C81.347 (4)C12—C131.360 (6)
C1—C21.450 (4)C12—H120.9300
C2—C71.382 (4)C13—C141.390 (6)
C2—C31.393 (4)C13—H130.9300
C3—C41.383 (4)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.390 (5)C15—H15B0.9600
C4—C151.509 (4)C15—H15C0.9600
C5—C61.388 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.378 (4)C16—H16C0.9600
C6—C161.500 (4)C17—H17A0.9600
C8—C171.479 (4)C17—H17B0.9600
C9—C101.369 (4)C17—H17C0.9600
O2—S—C1107.90 (15)C11—C10—H10120.5
O2—S—C9107.03 (16)C9—C10—H10120.5
C1—S—C997.32 (13)C10—C11—C12120.6 (4)
C8—O1—C7106.4 (2)C10—C11—H11119.7
C8—C1—C2107.3 (2)C12—C11—H11119.7
C8—C1—S123.7 (2)C13—C12—C11120.8 (4)
C2—C1—S129.0 (2)C13—C12—H12119.6
C7—C2—C3119.4 (3)C11—C12—H12119.6
C7—C2—C1104.5 (2)C12—C13—C14119.4 (4)
C3—C2—C1136.1 (3)C12—C13—H13120.3
C4—C3—C2118.6 (3)C14—C13—H13120.3
C4—C3—H3120.7C9—C14—C13119.0 (4)
C2—C3—H3120.7C9—C14—H14120.5
C3—C4—C5119.4 (3)C13—C14—H14120.5
C3—C4—C15120.8 (3)C4—C15—H15A109.5
C5—C4—C15119.8 (3)C4—C15—H15B109.5
C6—C5—C4124.0 (3)H15A—C15—H15B109.5
C6—C5—H5118.0C4—C15—H15C109.5
C4—C5—H5118.0H15A—C15—H15C109.5
C7—C6—C5114.3 (3)H15B—C15—H15C109.5
C7—C6—C16122.0 (3)C6—C16—H16A109.5
C5—C6—C16123.7 (3)C6—C16—H16B109.5
C6—C7—O1124.9 (3)H16A—C16—H16B109.5
C6—C7—C2124.4 (3)C6—C16—H16C109.5
O1—C7—C2110.7 (2)H16A—C16—H16C109.5
C1—C8—O1111.1 (2)H16B—C16—H16C109.5
C1—C8—C17132.9 (3)C8—C17—H17A109.5
O1—C8—C17115.9 (3)C8—C17—H17B109.5
C10—C9—C14121.1 (3)H17A—C17—H17B109.5
C10—C9—S118.6 (3)C8—C17—H17C109.5
C14—C9—S120.2 (3)H17A—C17—H17C109.5
C11—C10—C9119.1 (4)H17B—C17—H17C109.5
O2—S—C1—C8134.5 (3)C3—C2—C7—C6−1.3 (4)
C9—S—C1—C8−114.9 (3)C1—C2—C7—C6179.7 (3)
O2—S—C1—C2−42.3 (3)C3—C2—C7—O1178.9 (2)
C9—S—C1—C268.3 (3)C1—C2—C7—O1−0.1 (3)
C8—C1—C2—C70.5 (3)C2—C1—C8—O1−0.6 (3)
S—C1—C2—C7177.7 (2)S—C1—C8—O1−178.05 (18)
C8—C1—C2—C3−178.3 (3)C2—C1—C8—C17−178.2 (3)
S—C1—C2—C3−1.1 (5)S—C1—C8—C174.4 (5)
C7—C2—C3—C40.8 (4)C7—O1—C8—C10.6 (3)
C1—C2—C3—C4179.4 (3)C7—O1—C8—C17178.6 (2)
C2—C3—C4—C50.1 (4)O2—S—C9—C10176.0 (2)
C2—C3—C4—C15−177.9 (3)C1—S—C9—C1064.7 (3)
C3—C4—C5—C6−0.5 (5)O2—S—C9—C14−8.4 (3)
C15—C4—C5—C6177.5 (3)C1—S—C9—C14−119.7 (3)
C4—C5—C6—C70.0 (4)C14—C9—C10—C113.5 (5)
C4—C5—C6—C16−179.3 (3)S—C9—C10—C11179.0 (3)
C5—C6—C7—O1−179.3 (2)C9—C10—C11—C12−1.5 (6)
C16—C6—C7—O10.0 (4)C10—C11—C12—C13−1.1 (7)
C5—C6—C7—C20.9 (4)C11—C12—C13—C141.8 (6)
C16—C6—C7—C2−179.8 (3)C10—C9—C14—C13−2.8 (5)
C8—O1—C7—C6180.0 (3)S—C9—C14—C13−178.2 (3)
C8—O1—C7—C2−0.2 (3)C12—C13—C14—C90.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2045).

References

  • Brandenburg, K. (1998). DIAMOND Version 2.1. University of Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography