PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1450.
Published online 2008 July 9. doi:  10.1107/S1600536808020606
PMCID: PMC2962027

9-(2-Pyridylmeth­oxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate

Abstract

In the title organic salt, C18H14N3O+·ClO4 ·CH4O, there is a π–π stacking inter­action between neighbouring 1,10-phenanthroline rings and the relevant distances are 3.5453 (18) Å for the centroid–centroid distance and 3.354 Å for the perpendicular distance. There is also a relatively close contact between a C—H bond and a symmetry-related pyridine ring. There are classical N—H(...)O and O—H(...)N hydrogen bonds and non-classical C—H(...)O hydrogen bonds involving the cation, methanol solvent mol­ecule and perchlorate anion.

Related literature

For a related structure, see: Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1450-scheme1.jpg

Experimental

Crystal data

  • C18H14N3O+·ClO4 ·CH4O
  • M r = 419.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1450-efi1.jpg
  • a = 7.0765 (15) Å
  • b = 10.597 (2) Å
  • c = 14.164 (3) Å
  • α = 110.003 (3)°
  • β = 94.999 (3)°
  • γ = 105.304 (3)°
  • V = 944.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 298 (2) K
  • 0.38 × 0.31 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.912, T max = 0.957
  • 5027 measured reflections
  • 3504 independent reflections
  • 2695 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.164
  • S = 1.05
  • 3504 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020606/bq2085sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020606/bq2085Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2007B26).

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008) and we have tried to prepare a complex containing Manganese(II) and iron(III) metallic ions and 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline ligand, but we obtained the title organic salt.

Fig. 1 shows the structure, revealing that one of N atoms from phenanthroline ring was protonated and it was turned into a cation. There is a π-π stacking interaction involving symmetry-related 1,10-phenanthroline rings, the relevant distances being Cg1···Cg2i = 3.5453 (18) Å and Cg1···Cg2iperp = 3.354 Å and α = 1.09°; there also exits interaction between C8-H8 bond and pyridine ring and the relevant distance is H8···Cg3ii = 2.81 Å for H8 atom to the centroid of the pyridine ring and H8···Cg3iiperp = 2.803 Å for the perpendicular distance from H8 atom to the pyridine ring plane [symmetry code: (i) -X, -Y, 1-Z; (ii) 1-X, -Y, 1-Z; Cg1, Cg2 and Cg3 are the centroids of the N2/C6C7C10-C12 ring, C4-C9 ring and N3/C14-C18 rings, respectively; Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i; ]. There exist N-H···O and O-H···N classic hydrogen bonds and C-H···O non-classic hydrogen bonds (Fig. 1 and Table 1) in the asymmetric unit.

Experimental

10 ml methanol solution of 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline (0.1200 g, 0.418 mmol) was added into 20 ml methanol solution containing FeCl3.6H2O (0.0565 g, 0.209 mmol) and Mn(ClO4)2.6H2O (0.0757 g, 0.209 mmol), and the mixed solution was stirred for half a hour. Yellow single crystals were obtained after the solution had been allowed to stand at room temperature for three days.

Refinement

Nitrigen-bound H atom and Oxygen-bound H atom were located in a difference Fourier map, then placed in calculated positions with N—H = 0.81 Å and O—H = 0.89 Å and refined as riding with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with with C—H = 0.97 Å for methyl, C—H = 0.96 Å for methylene and C—H = 0.93 Å for other H atoms, and refined as riding with Uiso = 1.5Ueq(C) for methyl H and Uiso = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
Structure of title organic salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The classic hydrogen bonds are shown as dashed lines and non-classic hydrogen bonds as double dashed lines.
Fig. 2.
The packing and π-π stacking interaction (dashed lines) and C—H···π interaction (dashed lines), the methanol molecule and perchlorate anion have been omitted for clarity.

Crystal data

C18H14N3O+·ClO4·CH4OZ = 2
Mr = 419.81F000 = 436
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.0765 (15) ÅCell parameters from 1588 reflections
b = 10.597 (2) Åθ = 3.0–25.9º
c = 14.164 (3) ŵ = 0.25 mm1
α = 110.003 (3)ºT = 298 (2) K
β = 94.999 (3)ºBlock, yellow
γ = 105.304 (3)º0.38 × 0.31 × 0.18 mm
V = 944.1 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer3504 independent reflections
Radiation source: fine-focus sealed tube2695 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 298(2) Kθmax = 25.7º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.912, Tmax = 0.957k = −12→12
5027 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.164  w = 1/[σ2(Fo2) + (0.0858P)2 + 0.2952P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3504 reflectionsΔρmax = 0.42 e Å3
263 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2377 (5)0.4244 (3)0.6774 (2)0.0530 (7)
H10.22920.47750.74350.064*
C20.2448 (5)0.4829 (3)0.6041 (3)0.0613 (8)
H20.23930.57440.62040.074*
C30.2598 (5)0.4057 (3)0.5080 (2)0.0546 (7)
H30.26630.44500.45840.066*
C40.2655 (4)0.2661 (3)0.4831 (2)0.0430 (6)
C50.2549 (4)0.2104 (3)0.55982 (18)0.0374 (6)
C60.2521 (3)0.0678 (3)0.53855 (18)0.0349 (5)
C70.2587 (4)−0.0143 (3)0.43867 (19)0.0402 (6)
C80.2705 (4)0.0441 (3)0.3616 (2)0.0471 (7)
H80.2750−0.01200.29550.057*
C90.2753 (4)0.1789 (3)0.3827 (2)0.0485 (7)
H90.28510.21530.33150.058*
C100.2529 (4)−0.1564 (3)0.4190 (2)0.0443 (6)
H100.2592−0.21510.35410.053*
C110.2382 (4)−0.2049 (3)0.4948 (2)0.0455 (6)
H110.2333−0.29760.48310.055*
C120.2304 (4)−0.1128 (3)0.59278 (19)0.0386 (6)
C130.2012 (4)−0.0886 (3)0.7665 (2)0.0490 (7)
H13A0.1173−0.14800.79560.059*
H13B0.1426−0.01600.76520.059*
C140.4068 (4)−0.0208 (3)0.8319 (2)0.0460 (7)
C150.5178 (5)−0.1004 (3)0.8526 (2)0.0557 (8)
H150.4653−0.19860.82650.067*
C160.7067 (5)−0.0345 (4)0.9121 (3)0.0692 (9)
H160.7833−0.08680.92700.083*
C170.7788 (6)0.1094 (4)0.9488 (3)0.0753 (10)
H170.90610.15700.98900.090*
C180.6621 (6)0.1827 (4)0.9257 (3)0.0720 (10)
H180.71320.28080.95110.086*
C190.2308 (7)0.3748 (4)0.9157 (3)0.0887 (12)
H19A0.24830.35430.97620.133*
H19B0.11070.40000.91020.133*
H19C0.34310.45210.91970.133*
Cl10.20777 (12)0.45705 (7)0.21213 (5)0.0541 (3)
N10.2429 (3)0.2941 (2)0.65502 (16)0.0419 (5)
H40.23620.26940.70320.050*
N20.2387 (3)0.0189 (2)0.61631 (15)0.0377 (5)
N30.4780 (4)0.1207 (3)0.86832 (19)0.0580 (7)
O10.2091 (3)−0.17350 (18)0.66282 (14)0.0476 (5)
O20.2322 (8)0.5077 (4)0.3177 (2)0.1432 (16)
O30.2709 (7)0.5724 (3)0.1857 (3)0.1279 (13)
O40.3128 (7)0.3648 (4)0.1769 (3)0.1583 (17)
O50.0081 (6)0.3882 (4)0.1659 (3)0.1494 (16)
O60.2165 (4)0.2545 (2)0.82875 (15)0.0664 (6)
H50.30720.21510.84170.100*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0681 (19)0.0396 (14)0.0503 (16)0.0211 (14)0.0085 (14)0.0135 (12)
C20.080 (2)0.0411 (15)0.068 (2)0.0208 (15)0.0100 (17)0.0261 (15)
C30.0631 (19)0.0527 (17)0.0588 (18)0.0173 (15)0.0088 (15)0.0356 (15)
C40.0392 (14)0.0474 (15)0.0473 (15)0.0123 (12)0.0085 (12)0.0248 (12)
C50.0343 (13)0.0415 (13)0.0373 (13)0.0109 (11)0.0062 (10)0.0170 (11)
C60.0291 (12)0.0387 (13)0.0363 (13)0.0085 (10)0.0057 (10)0.0156 (10)
C70.0315 (13)0.0474 (14)0.0397 (14)0.0116 (11)0.0057 (10)0.0149 (11)
C80.0455 (15)0.0615 (17)0.0344 (13)0.0174 (13)0.0117 (11)0.0169 (12)
C90.0496 (16)0.0619 (18)0.0435 (15)0.0187 (14)0.0125 (12)0.0298 (13)
C100.0430 (15)0.0437 (14)0.0389 (14)0.0149 (12)0.0062 (11)0.0064 (11)
C110.0461 (15)0.0361 (13)0.0488 (16)0.0137 (12)0.0051 (12)0.0100 (12)
C120.0339 (13)0.0379 (13)0.0434 (14)0.0105 (11)0.0031 (11)0.0162 (11)
C130.0567 (17)0.0508 (16)0.0479 (16)0.0167 (14)0.0156 (13)0.0276 (13)
C140.0619 (18)0.0460 (15)0.0369 (14)0.0193 (13)0.0143 (12)0.0211 (12)
C150.075 (2)0.0495 (16)0.0492 (17)0.0266 (15)0.0100 (15)0.0215 (13)
C160.078 (2)0.080 (2)0.060 (2)0.039 (2)0.0054 (17)0.0305 (18)
C170.072 (2)0.082 (3)0.061 (2)0.019 (2)−0.0055 (17)0.0218 (19)
C180.085 (3)0.0527 (18)0.065 (2)0.0110 (18)−0.0040 (18)0.0188 (16)
C190.124 (4)0.088 (3)0.057 (2)0.051 (3)0.022 (2)0.0168 (19)
Cl10.0777 (6)0.0433 (4)0.0435 (4)0.0249 (4)0.0107 (3)0.0149 (3)
N10.0504 (13)0.0393 (11)0.0388 (12)0.0157 (10)0.0074 (10)0.0173 (9)
N20.0398 (12)0.0377 (11)0.0367 (11)0.0126 (9)0.0070 (9)0.0152 (9)
N30.0745 (18)0.0465 (14)0.0524 (15)0.0183 (13)0.0056 (13)0.0201 (11)
O10.0615 (12)0.0371 (9)0.0455 (11)0.0141 (9)0.0073 (9)0.0189 (8)
O20.287 (5)0.119 (3)0.0502 (16)0.101 (3)0.037 (2)0.0340 (17)
O30.204 (4)0.087 (2)0.108 (2)0.035 (2)0.043 (2)0.0598 (19)
O40.217 (4)0.144 (3)0.135 (3)0.143 (3)0.026 (3)0.015 (2)
O50.096 (3)0.119 (3)0.166 (4)−0.003 (2)−0.004 (2)0.010 (3)
O60.0970 (17)0.0684 (14)0.0451 (12)0.0420 (13)0.0156 (11)0.0226 (10)

Geometric parameters (Å, °)

C1—N11.318 (3)C13—O11.451 (3)
C1—C21.377 (4)C13—C141.500 (4)
C1—H10.9300C13—H13A0.9700
C2—C31.357 (4)C13—H13B0.9700
C2—H20.9300C14—N31.340 (4)
C3—C41.411 (4)C14—C151.377 (4)
C3—H30.9300C15—C161.375 (5)
C4—C51.402 (4)C15—H150.9300
C4—C91.426 (4)C16—C171.362 (5)
C5—N11.361 (3)C16—H160.9300
C5—C61.431 (3)C17—C181.363 (5)
C6—N21.368 (3)C17—H170.9300
C6—C71.397 (3)C18—N31.337 (4)
C7—C101.423 (4)C18—H180.9300
C7—C81.425 (4)C19—O61.410 (4)
C8—C91.346 (4)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C10—C111.340 (4)Cl1—O41.368 (3)
C10—H100.9300Cl1—O31.375 (3)
C11—C121.413 (4)Cl1—O21.383 (3)
C11—H110.9300Cl1—O51.388 (4)
C12—N21.303 (3)N1—H40.8111
C12—O11.354 (3)O6—H50.8900
N1—C1—C2120.9 (3)C14—C13—H13A109.5
N1—C1—H1119.6O1—C13—H13B109.5
C2—C1—H1119.6C14—C13—H13B109.5
C3—C2—C1119.4 (3)H13A—C13—H13B108.1
C3—C2—H2120.3N3—C14—C15121.6 (3)
C1—C2—H2120.3N3—C14—C13116.9 (3)
C2—C3—C4120.3 (3)C15—C14—C13121.5 (3)
C2—C3—H3119.9C16—C15—C14119.8 (3)
C4—C3—H3119.9C16—C15—H15120.1
C5—C4—C3118.2 (2)C14—C15—H15120.1
C5—C4—C9119.1 (2)C17—C16—C15118.4 (3)
C3—C4—C9122.7 (2)C17—C16—H16120.8
N1—C5—C4118.6 (2)C15—C16—H16120.8
N1—C5—C6120.4 (2)C16—C17—C18119.2 (3)
C4—C5—C6121.0 (2)C16—C17—H17120.4
N2—C6—C7123.9 (2)C18—C17—H17120.4
N2—C6—C5118.3 (2)N3—C18—C17123.4 (3)
C7—C6—C5117.8 (2)N3—C18—H18118.3
C6—C7—C10116.8 (2)C17—C18—H18118.3
C6—C7—C8120.5 (2)O6—C19—H19A109.5
C10—C7—C8122.7 (2)O6—C19—H19B109.5
C9—C8—C7121.2 (2)H19A—C19—H19B109.5
C9—C8—H8119.4O6—C19—H19C109.5
C7—C8—H8119.4H19A—C19—H19C109.5
C8—C9—C4120.4 (2)H19B—C19—H19C109.5
C8—C9—H9119.8O4—Cl1—O3111.0 (3)
C4—C9—H9119.8O4—Cl1—O2111.7 (2)
C11—C10—C7119.4 (2)O3—Cl1—O2107.0 (2)
C11—C10—H10120.3O4—Cl1—O5108.2 (3)
C7—C10—H10120.3O3—Cl1—O5107.6 (3)
C10—C11—C12119.0 (2)O2—Cl1—O5111.2 (3)
C10—C11—H11120.5C1—N1—C5122.6 (2)
C12—C11—H11120.5C1—N1—H4113.1
N2—C12—O1121.1 (2)C5—N1—H4124.3
N2—C12—C11124.7 (2)C12—N2—C6116.2 (2)
O1—C12—C11114.2 (2)C18—N3—C14117.6 (3)
O1—C13—C14110.5 (2)C12—O1—C13119.09 (19)
O1—C13—H13A109.5C19—O6—H5109.6
N1—C1—C2—C3−0.8 (5)C7—C10—C11—C12−0.5 (4)
C1—C2—C3—C40.8 (5)C10—C11—C12—N2−0.8 (4)
C2—C3—C4—C50.1 (4)C10—C11—C12—O1177.9 (2)
C2—C3—C4—C9178.2 (3)O1—C13—C14—N3115.5 (3)
C3—C4—C5—N1−1.1 (4)O1—C13—C14—C15−63.9 (3)
C9—C4—C5—N1−179.2 (2)N3—C14—C15—C160.0 (4)
C3—C4—C5—C6177.5 (2)C13—C14—C15—C16179.3 (3)
C9—C4—C5—C6−0.6 (4)C14—C15—C16—C17−0.2 (5)
N1—C5—C6—N2−0.5 (3)C15—C16—C17—C180.2 (5)
C4—C5—C6—N2−179.1 (2)C16—C17—C18—N30.0 (6)
N1—C5—C6—C7178.1 (2)C2—C1—N1—C5−0.1 (4)
C4—C5—C6—C7−0.5 (4)C4—C5—N1—C11.1 (4)
N2—C6—C7—C10−0.6 (4)C6—C5—N1—C1−177.5 (2)
C5—C6—C7—C10−179.1 (2)O1—C12—N2—C6−177.3 (2)
N2—C6—C7—C8179.3 (2)C11—C12—N2—C61.3 (4)
C5—C6—C7—C80.8 (4)C7—C6—N2—C12−0.6 (3)
C6—C7—C8—C9−0.1 (4)C5—C6—N2—C12178.0 (2)
C10—C7—C8—C9179.9 (3)C17—C18—N3—C14−0.2 (5)
C7—C8—C9—C4−1.0 (4)C15—C14—N3—C180.2 (4)
C5—C4—C9—C81.3 (4)C13—C14—N3—C18−179.2 (3)
C3—C4—C9—C8−176.7 (3)N2—C12—O1—C13−1.8 (3)
C6—C7—C10—C111.1 (4)C11—C12—O1—C13179.4 (2)
C8—C7—C10—C11−178.8 (2)C14—C13—O1—C12−90.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H4···O60.811.852.648 (3)167
O6—H5···N30.891.852.738 (4)175
C3—H3···O20.932.323.238 (5)170
C13—H13B···O60.972.583.405 (4)143
C8—H8···Cg3i0.932.813.650 (2)151

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2085).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography