PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1389.
Published online 2008 July 5. doi:  10.1107/S1600536808019375
PMCID: PMC2962022

N-(4-Bromo­phenyl­sulfon­yl)-2,2,2-tri­methyl­acetamide

Abstract

The conformations of the N—H and C=O bonds in the SO2—NH—CO—C group of the title compound (N4BPSTMAA), C11H14BrNO3S, are trans to each other, similar to what is observed in N-(4-chloro­phenyl­sulfon­yl)-2,2,2-trimethyl­acet­amide (N4CPSTMAA) and 2,2,2-trimethyl-N-(4-methyl­phenyl­­sulfon­yl)acetamide (N4MPSTMAA). The bond para­meters in N4BPSTMAA are similar to those in N4CPSTMAA, N4MPSTMAA, N-aryl-2,2,2-trimethyl­acet­amides and 4-bromo­benzene­sulfonamide. The benzene ring and the SO2—NH—CO—C group in N4BPSTMAA form a dihedral angle of 82.8 (1)°, comparable with the values of 82.2 (1)° in N4CPSTMAA and 71.2 (1)° in N4MPSTMAA. N—H(...)O hydrogen bonds form a centrosymmetric ring characterized by an R 2 2(8) motif.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2007 [triangle], 2008 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1389-scheme1.jpg

Experimental

Crystal data

  • C11H14BrNO3S
  • M r = 320.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1389-efi1.jpg
  • a = 6.066 (1) Å
  • b = 10.858 (1) Å
  • c = 11.092 (2) Å
  • α = 68.19 (1)°
  • β = 78.66 (2)°
  • γ = 88.10 (2)°
  • V = 664.40 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.25 mm−1
  • T = 299 (2) K
  • 0.20 × 0.08 × 0.04 mm

Data collection

  • Oxford Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.563, T max = 0.881
  • 6843 measured reflections
  • 2692 independent reflections
  • 1551 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.101
  • S = 0.97
  • 2692 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019375/bx2154sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019375/bx2154Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-bromophenylsulfonyl)-2,2,2-trimethylacetamide (N4BPSTMAA) has been determined (Gowda et al., 2003, 2007, 2008). The conformations of the N—H and C═O bonds of the SO2—NH—CO—C group in N4CPSTMAA are anti to each other (Fig. 1), similar to that observed in N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008). The bond parameters in N4BPSTMAA are similar to those in N4CPSTMAA, N4MPSTMAA (Gowda et al., 2008), N-(aryl)-2,2,2-trimethylacetamides (Gowda et al., 2007) and 4-bromobenzenesulfonamide (Gowda et al., 2003). The N—H···O hydrogen bonds form a centrosymmetric macro-ring characterized by R22(8) motif (Bernstein et al., 1995) ( Table 1, Fig. 2).

Experimental

The title compound was prepared by refluxing 4-bromobenzenesulfonamide (0.10 mole) with an excess pivalyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H14BrNO3SZ = 2
Mr = 320.20F000 = 324
Triclinic, P1Dx = 1.601 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.066 (1) ÅCell parameters from 2537 reflections
b = 10.858 (1) Åθ = 2.3–28.0º
c = 11.092 (2) ŵ = 3.25 mm1
α = 68.19 (1)ºT = 299 (2) K
β = 78.66 (2)ºNeedle, colourless
γ = 88.10 (2)º0.20 × 0.08 × 0.04 mm
V = 664.40 (17) Å3

Data collection

Oxford Xcalibur diffractometer with Sapphire CCD detector2692 independent reflections
Radiation source: fine-focus sealed tube1551 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 2.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) (Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)h = −7→7
Tmin = 0.563, Tmax = 0.881k = −13→13
6843 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0526P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2692 reflectionsΔρmax = 0.37 e Å3
154 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.10728 (8)−0.00925 (4)0.21716 (5)0.0810 (2)
S10.28409 (14)0.35519 (8)0.47093 (8)0.0451 (2)
O10.4965 (4)0.3098 (2)0.5007 (2)0.0548 (6)
O20.1120 (4)0.3668 (2)0.5741 (2)0.0580 (6)
O30.5763 (4)0.4572 (2)0.2073 (2)0.0615 (7)
N10.3085 (4)0.5038 (2)0.3551 (3)0.0449 (7)
H1N0.23090.56530.37200.054*
C10.1807 (5)0.2548 (3)0.3993 (3)0.0399 (8)
C20.2864 (6)0.1387 (3)0.4005 (3)0.0478 (8)
H20.41340.11450.43780.057*
C30.2013 (6)0.0601 (3)0.3458 (3)0.0513 (9)
H30.2703−0.01760.34560.062*
C40.0124 (6)0.0983 (3)0.2914 (3)0.0487 (9)
C5−0.0926 (6)0.2124 (3)0.2896 (4)0.0521 (9)
H5−0.21930.23640.25200.062*
C6−0.0080 (5)0.2915 (3)0.3443 (4)0.0506 (9)
H6−0.07780.36910.34400.061*
C70.4476 (6)0.5366 (3)0.2305 (3)0.0428 (8)
C80.4154 (5)0.6724 (3)0.1284 (3)0.0451 (8)
C90.1793 (6)0.6700 (4)0.0986 (4)0.0740 (12)
H9A0.16650.60080.06570.089*
H9B0.15520.75400.03310.089*
H9C0.06860.65360.17820.089*
C100.4365 (8)0.7799 (4)0.1826 (4)0.0856 (14)
H10A0.32320.76390.26110.103*
H10B0.41690.86490.11720.103*
H10C0.58280.77880.20370.103*
C110.5872 (7)0.6969 (4)0.0018 (4)0.0759 (12)
H11A0.73600.69510.01970.091*
H11B0.56600.7821−0.06280.091*
H11C0.56840.6290−0.03180.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1133 (4)0.0498 (3)0.0888 (4)−0.0078 (2)−0.0360 (3)−0.0269 (2)
S10.0570 (6)0.0369 (5)0.0389 (5)0.0063 (4)−0.0065 (4)−0.0130 (4)
O10.0597 (15)0.0513 (14)0.0543 (15)0.0087 (12)−0.0183 (13)−0.0177 (12)
O20.0759 (16)0.0479 (14)0.0402 (14)0.0118 (12)0.0055 (13)−0.0145 (11)
O30.0650 (16)0.0606 (16)0.0540 (16)0.0187 (14)−0.0034 (13)−0.0213 (13)
N10.0600 (17)0.0323 (14)0.0429 (17)0.0063 (13)−0.0063 (14)−0.0169 (13)
C10.0397 (18)0.0325 (17)0.0390 (18)−0.0038 (14)0.0030 (15)−0.0084 (14)
C20.051 (2)0.0410 (19)0.051 (2)0.0136 (16)−0.0139 (17)−0.0153 (16)
C30.065 (2)0.0285 (17)0.054 (2)0.0035 (16)−0.0028 (19)−0.0118 (16)
C40.060 (2)0.0319 (17)0.052 (2)0.0014 (16)−0.0134 (19)−0.0121 (16)
C50.0446 (19)0.042 (2)0.059 (2)−0.0033 (16)−0.0081 (17)−0.0081 (17)
C60.048 (2)0.0362 (18)0.065 (2)0.0086 (16)−0.0116 (19)−0.0167 (17)
C70.045 (2)0.049 (2)0.0371 (19)−0.0025 (17)−0.0069 (16)−0.0188 (16)
C80.048 (2)0.0432 (19)0.0356 (19)−0.0061 (15)−0.0020 (16)−0.0076 (15)
C90.063 (3)0.076 (3)0.065 (3)0.001 (2)−0.021 (2)−0.002 (2)
C100.144 (4)0.041 (2)0.070 (3)−0.005 (2)−0.029 (3)−0.016 (2)
C110.071 (3)0.077 (3)0.057 (3)−0.001 (2)0.001 (2)−0.006 (2)

Geometric parameters (Å, °)

Br1—C41.891 (3)C5—H50.9300
S1—O11.420 (2)C6—H60.9300
S1—O21.430 (2)C7—C81.524 (5)
S1—N11.636 (3)C8—C111.514 (5)
S1—C11.760 (3)C8—C101.517 (5)
O3—C71.208 (4)C8—C91.535 (5)
N1—C71.394 (4)C9—H9A0.9600
N1—H1N0.8600C9—H9B0.9600
C1—C61.380 (4)C9—H9C0.9600
C1—C21.392 (4)C10—H10A0.9600
C2—C31.378 (4)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.380 (5)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.369 (4)C11—H11C0.9600
C5—C61.381 (4)
O1—S1—O2118.80 (15)O3—C7—N1120.2 (3)
O1—S1—N1111.33 (14)O3—C7—C8124.0 (3)
O2—S1—N1103.71 (14)N1—C7—C8115.7 (3)
O1—S1—C1108.67 (15)C11—C8—C10110.9 (3)
O2—S1—C1109.40 (15)C11—C8—C7109.5 (3)
N1—S1—C1103.87 (14)C10—C8—C7110.3 (3)
C7—N1—S1123.8 (2)C11—C8—C9108.6 (3)
C7—N1—H1N118.1C10—C8—C9110.0 (3)
S1—N1—H1N118.1C7—C8—C9107.6 (3)
C6—C1—C2120.7 (3)C8—C9—H9A109.5
C6—C1—S1119.2 (2)C8—C9—H9B109.5
C2—C1—S1120.1 (2)H9A—C9—H9B109.5
C3—C2—C1119.4 (3)C8—C9—H9C109.5
C3—C2—H2120.3H9A—C9—H9C109.5
C1—C2—H2120.3H9B—C9—H9C109.5
C2—C3—C4119.1 (3)C8—C10—H10A109.5
C2—C3—H3120.5C8—C10—H10B109.5
C4—C3—H3120.5H10A—C10—H10B109.5
C5—C4—C3122.0 (3)C8—C10—H10C109.5
C5—C4—Br1118.6 (3)H10A—C10—H10C109.5
C3—C4—Br1119.5 (2)H10B—C10—H10C109.5
C4—C5—C6119.2 (3)C8—C11—H11A109.5
C4—C5—H5120.4C8—C11—H11B109.5
C6—C5—H5120.4H11A—C11—H11B109.5
C1—C6—C5119.7 (3)C8—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
O1—S1—N1—C755.9 (3)C3—C4—C5—C6−0.3 (5)
O2—S1—N1—C7−175.2 (2)Br1—C4—C5—C6179.6 (3)
C1—S1—N1—C7−60.9 (3)C2—C1—C6—C5−0.1 (5)
O1—S1—C1—C6−170.6 (3)S1—C1—C6—C5−179.0 (3)
O2—S1—C1—C658.2 (3)C4—C5—C6—C10.2 (5)
N1—S1—C1—C6−52.0 (3)S1—N1—C7—O3−7.6 (4)
O1—S1—C1—C210.5 (3)S1—N1—C7—C8169.3 (2)
O2—S1—C1—C2−120.7 (3)O3—C7—C8—C11−6.7 (4)
N1—S1—C1—C2129.1 (3)N1—C7—C8—C11176.5 (3)
C6—C1—C2—C30.1 (5)O3—C7—C8—C10−129.0 (4)
S1—C1—C2—C3179.0 (3)N1—C7—C8—C1054.2 (4)
C1—C2—C3—C4−0.2 (5)O3—C7—C8—C9111.0 (4)
C2—C3—C4—C50.3 (5)N1—C7—C8—C9−65.7 (4)
C2—C3—C4—Br1−179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.232.982 (3)146

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2154).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  • Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography